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ABSTRACT

Agent-based modeling and simulation (ABMS) is a new approach to modeling systems comprised of autonomous, interacting
agents. Computational advances have made possible a growing number of agent-based models across a variety of application
domains. Applications range from modeling agent behavior in the stock market, supply chains, and consumer markets, to
predicting the spread of epidemics, mitigating the threat of bio-warfare, and understanding the factors that may be responsible
for the fall of ancient civilizations. Such progress suggests the potential of ABMS to have far-reaching effects on the way that
businesses use computers to support decision-making and researchers use agent-based models as electronic laboratories.
Some contend that ABMS “is a third way of doing science” and could augment traditional deductive and inductive reasoning
as discovery methods. This brief tutorial introduces agent-based modeling by describing the foundations of ABMS, discuss-
ing some illustrative applications, and addressing toolkits and methods for developing agent-based models.

1 INTRODUCTION

Agent-based modeling and simulation (ABMS) is a new modeling approach that has gained increasing attention over the past
10 years. This growth trend is evidenced by the increasing numbers of articles appearing in modeling and applications jour-
nals, the number of funded programs that call for agent-based models that incorporate elements of human and social beha-
vior, the growing number of conferences on or that have tracks dedicated to agent-based modeling, the demand for ABMS
courses and instructional programs, and the number of presentations at conferences such as the WSC that reference agent-
based modeling. Some contend that ABMS “is a third way of doing science” and could augment traditional deductive and in-
ductive reasoning as discovery methods (Axelrod 1997). This tutorial provides a necessarily brief introduction to agent-based
modeling and simulation. The goals are to show that ABMS is:

e  Useful: Why ABMS is an appropriate modeling approach for a large class of problems and has advantages over
conventional modeling approaches in many cases,

e Usable: How ABMS is advancing to the point of producing portable, extensible, and transferable software, with bet-
ter integrated development environments and more examples of good applications, and

e Used: How ABMS is being used to solve practical problems.

This tutorial is organized into two parts. The first part (Section 2-3) is a tutorial on how to think about ABMS. The back-
ground on ABMS and its motivating principles are described along with some exemplary applications. The second part (be-
ginning with Section 4) is a tutorial on how to do ABMS. It addresses modeling approaches and toolkits for developing
agent-based models.
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2  HOW TO THINK ABOUT ABMS

2.1 The Need for Agent Based Modeling

Why is agent-based modeling becoming widespread? The answer is because we live in an increasingly complex world. First,
the systems that we need to analyze and model are becoming more complex in terms of their interdependencies. Convention-
al modeling tools may not be as applicable as they once were. An example application area is the deregulation of the formerly
centralized electric power industry in which agents are suddenly free to make pricing and investment choices based on their
individual criteria. Second, some systems have always been too complex for us to adequately model. Modeling economic
markets has traditionally relied on the notions of perfect markets, homogeneous agents, and long-run equilibrium because
these assumptions made the problems analytically and computationally tractable. We are beginning to be able to relax some
of these assumptions and take a more realistic view of these economic systems through ABMS. Third, data are being col-
lected and organized into databases at finer levels of granularity. Micro-data can now support individual-based simulations.
And fourth, but most importantly, computational power is advancing rapidly. We can now compute large-scale micro-
simulation models that would not have been plausible just a few years ago.

2.2 WhatIs an Agent

There is no universal agreement on the precise definition of the term “agent” in the context of ABMS. It is the subject of
much discussion and occasional debate. The issue is more than an academic one, as it often surfaces when one makes a claim
that their model is “agent-based” or when one is trying to discern whether such claims made by others have validity. There
are important implications of the term “agent-based” when used to describe a model in terms of the model’s capabilities or
potential capabilities that could be attained through relatively minor modification. A formal definition of “agent” is beyond
the scope of this paper; in the literature informal descriptions of “agent” tend to agree on more points than they disagree.

Unlike particle systems (idealized gas particles for example) which are the subject of the field of physical systems simu-
lation, agents as used are are diverse, heterogeneous, and dynamic in their attributes and behavioral rules, as shown in Figure
1. Some modelers consider any type of independent component whether it be software or a model to be an agent (Bonabeau
2001). An independent component’s behavior can range from simple in nature, e.g., described by simple if-then rules, to the
complex, e.g., described by complex behavioral models from the fields of cognitive science or artificial intelligence. Some
authors insist that a component’s behavior must also be adaptive in order for it to be considered an agent. In this view, the
agent label is reserved for components that can learn from their environment and dynamically change their behaviors in re-
sponse to their experiences. Casti (1997) argues that agents should contain both base-level rules for behavior as well as a
higher-level set of “rules to change the rules.” The base-level rules provide responses to the environment, while the “rules to
change the rules” provide adaptation. Jennings (2000) provides a computer science view of “agent” that emphasizes the es-
sential characteristic of autonomous behavior. This requires agents to be active responders and planners rather than purely
passive components.

For practical modeling purposes, we consider agents to have certain properties and attributes:

e An agent is autonomous and self-directed. An agent can function independently in its environment and in its interac-
tions with other agents, generally from a limited range of situations that are of interest. We refer to an agent’s beha-
vior as the representation of a process that links the agent’s sensing of its environment to its decisions and actions.

e Agents are modular or self-contained. An agent is an identifiable, discrete individual with a set of characteristics or
attributes, behaviors, and decision-making capability. The discreteness requirement implies that an agent has a
boundary in a sense and one can easily determine whether something (that is, an element of the model’s state) is part
of an agent, is not part of an agent, or is a characteristic shared among agents.

e An agent is social, interacting with other agents. Agents have protocols or mechanisms that describe how they inte-
ract with other agents, just as an agent has behaviors. Common agent interaction protocols include contention for
space and collision avoidance; agent recognition; communication and information exchange; influence; and other
domain-or application-specific mechanisms.

Agents often have additional properties, which may or may not be considered as defining properties or necessary for agency.

e An agent may live in an environment. Agents interact with their environment as well as with other agents. An agent
is situated, in the sense that its behavior is situationally dependent, which means that its behavior is based on the
current state of its interactions with other agents and with the environment.
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e An agent may have explicit goals that drive its behavior. The goals are not necessarily objectives to maximize as
much as criteria against which to assess the effectiveness of its decision and actions. This allows an agent to conti-
nuously compare the outcomes of its behaviors to its goals and gives it a benchmark for possibly modifying it beha-
vior.

e An agent may have the ability to learn and adapt its behaviors based on its experiences. Individual learning and
adaptation requires an agent to have memory, usually in the form of a dynamic agent attribute. (We contrast individ-
ual adaptation with population adaptation. In population adaptation, the proportion of individuals within the popu-
lation with certain attributes that better suit them to their environment increases over time. The individuals do not
necessarily change their behavior or adapt.)

e Agents often have resource attributes that indicate its current stock of one or more resources, e.g., energy, wealth,

information, etc.
l Environment l

Agent

Attributes

Behavioral rules

Memory

Resources

Decision making sophistication
Rules to modlify behavioral rules

Figure 1: A typical agent

An agent’s behavioral rules can vary in their sophistication, how much information is considered in the agent’s decision
(this is referred to as cognitive load), the agent’s internal models of the external world including the possible reactions or be-
haviors of other agents, and the extent of its memory of past events that an agent retains and uses in its decisions. Often, the
agents in a model will lack adaptation because it is not to achieve the model’s intended purpose. For example, in a supply
chain model it may not be necessary to model agent adaptation if the model’s purpose is to evaluate a set of specific invento-
ry management rules.

2.3  Agent-based Modeling and Simulation

Agent-based modeling is known by many names. ABM (agent-based modeling), ABS (agent-based systems or simulation),
and IBM (individual-based modeling) are all widely-used acronyms, but “ABMS” will be used throughout this discussion.
The term “agent” has connotations in realms other than agent-based modeling as well. ABMS agents are different from the
agents typically found in mobile agent systems. “Mobile agents” are light-weight software proxies that roam over the world-
wide web and perform various functions for users and to some extent can behave autonomously.

Another point of clarification concerns the term “simulation.” Agent-based simulation refers to a model in which the dy-
namic processes of agent interaction are simulated repeatedly over time, as in systems dynamics, time-stepped, discrete-
event, and other types of simulation. An agent-based model, more generally, is a model in which agents repeatedly interact.
For example, when agents optimize their collective behavior through simple exchanges of information as is done in ant colo-
ny optimization or in particle swarm optimization, the purpose is to achieve a desired end-state, i.e., the optimized system,
rather than to simulate a dynamic process for its own sake.

2.4  Background on ABMS

ABMS has connections to many other fields including complexity science, systems science, systems dynamics, computer
science, management science, several branches of the social sciences, and conventional modeling and simulation. ABMS
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draws on these fields for its theoretical foundations, its conceptual world view and philosophy, and for applicable modeling
techniques. ABMS is related to the fields of multi-agent systems (MAS) and robotics from the field of artificial intelligence
(Al), as well as Artificial Life (ALife). But ABMS is not only tied to understanding and designing “artificial” agents. Its most
common use is in modeling human social and organizational behavior and individual decision-making (Bonabeau 2001).
With this, comes the need to represent behaviors, social interaction, collaboration, group behavior, and its possible emer-
gence.

ABMS has its direct historical roots in complex adaptive systems (CAS) and the underlying notion that “systems are built
from the ground-up. CAS concerns itself with the question of how complex behaviors arise in nature among myopic, auto-
nomous agents. In addition, ABMS tends to be descriptive, with the intent of modeling the actual or plausible behavior of in-
dividuals, rather than normative such as traditional operations research (OR), which seeks to optimize and identify optimal
behaviors.

The field of CAS was originally motivated by investigations into adaptation and emergence of biological systems. CAS
have the ability to self-organize and dynamically reorganize their components in ways better suited to survive and excel in
their environments, and this adaptive ability occurs, remarkably, over an enormous range of scales. John Holland, a pioneer
in the field, identifies properties and mechanisms common to all CAS (Holland 1995) such as (1) Aggregation: allows groups
to form, (2) Nonlinearity: invalidates simple extrapolation, (3) Flows: allow the transfer and transformation of resources and
information, and (4) Diversity: allows agents to behave differently from one another and often leads to the system property of
robustness. CAS mechanisms are: (1) Tagging: allows agents to be named and recognized, (2) Internal models: allows agents
to reason about their worlds, and (3) Building blocks: allows components and whole systems to be composed of many levels
of simpler components. These CAS properties and mechanisms provide a useful reference for designing agent-based models.
Essentially, one models a complex adaptive system by developing an agent-based model.

Social agent-based modeling, modeling social processes starting at the individual level, has been around since at least
1970’s with Sakoda’s publication of the checkerboard model of social interaction (Sakoda 1971). This model was essentially
a cellular automata model (cellular automata are discussed in Section 4.2). More recently, Epstein and Axtell (1996) intro-
duced the idea of artificial societies in their SugarScape model. SugarScape uses agent-based modeling to represent an entire
society “from the ground up” by modeling its individuals and their interactions. Epstein and Axtell showed how an extensive
number of social processes could be credibly modeled including life, death, disease, war, reproduction, and wealth. This se-
minal work and it continues to offer a blueprint for many agent-based models of social processes.

2.5 ABMS Demonstrations on Order Creation

2.5.1 Demonstration: Life

We begin with a simple “game” developed by the mathematician John Conway, called Life (Gardner 1970). Life is based on
cellular automata (CA). Perhaps the simplest way to illustrate the basic ideas of agent-based modeling and simulation is
through CA. According to Casti (1997), the original notion of CA was developed by the physicist Stanislaw Ulam in re-
sponse to a question posed by the famous 20" century mathematician John von Neumann. The question was, “could a ma-
chine be programmed to make a copy of itself?” In effect, the question had to do with whether it was possible to develop a
logical structure that was complex enough to completely contain all of the instructions for replication. Von Neumann ans-
wered his own question by developing the abstract mathematical representation of a machine in the form of a cellular auto-
mata.

A typical CA is a two-dimensional grid or lattice partitioned into cells. Each cell assumes one of a finite number of states
at any point in time. A set of simple rules determines the value of each cell based on the cell’s previous state. Every cell is
updated each period according to the rules, as in a time-stepped simulation. The value of a cell in the next period depends on
the cell’s current value and the values of its immediate neighbors in the eight surrounding cells (assuming a “9-cell” Moore
neighborhood). Each cell is identical in terms of its update rules.

A CA is deterministic in that the same state for a cell and its neighbors always results in the same updated state. Life has
three rules that determine the next state (either On or OfYf) of each cell:

Rule I: The cell will be On in the next generation if exactly three of its eight neighboring cells are currently On.
Rule 2: The cell will retain its current state if exactly two of its neighbors are On.
Rule 3: The cell will be Off otherwise.
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Interpreting Life as an agent-based model, we can consider each cell to be an agent. The cell update rules represent an
agent’s “behavior.” The states of a cell (On or Off) are the possible agent states. The states of all the agents taken together at
a specific time in the simulation is the state of the model (system). The environment in Life is the grid upon which the agents
live. The function of the environment is minimal in Life. It merely serves as a reference point for determining an agent’s
neighborhood, which consists of the cells immediately adjacent to it.

Figure 2 shows snapshots from a Life simulation. Figure 2a shows an initial random distribution of On cells. The initial
random distribution of On cells is the only stochastic element of Life. After several updates of all cells in the grid in which
the update rules are applied to every cell, distinctive patterns emerge, and in some cases these patterns can sustain themselves
indefinitely throughout the simulation (Figure 2b). The nine-cell neighborhood assumption built into Life determines the
scope of agent interaction and the locally available information for each cell to update its state.

Generation 0 Generation 30

(a) (b)

Figure 2: Life simulation: (a) initial random layout of cells in the On state, (b) after all cells updated 30 times

Several observations are important about Life: the rules are simple and the rules use only local information. By local in-
formation we mean that the state of each cell is based only on the current state of the cell and the cells touching it in its im-
mediate neighborhood. Repeated simulations of Life also reveal that the resulting patterns are very sensitive to the initial
conditions. Each initial distribution of On cells results in an entirely different pattern of On and Off cells in the long-run.
Even changing single cells in the initial distribution of On cells results in vastly different Life outcomes.

These are interesting findings, and observing the patterns created by repeated simulations of Life reveals a world of vir-
tually endless creations. Yet the point is that we have a simple system comprised of simple rules that begins in a random state
and that yields patterns, order or structure as the case may be. The patterns can be said to “emerge.” Another example, the
Boids Model, yields similar emergent behavior.

2.5.2 Demonstration: Boids

The Boids simulation is a good example of how interacting agents, characterized by simple behavioral rules, lead to emergent
and seemingly organized behavior (Reynolds 2006). Agent behavior is reminiscent of schooling or flocking behavior in fish
or birds. In the Boids model, each agent has three rules governing its movement:

Rule 1: Cohesion: each agent steers toward the average position of its nearby “flockmates”

Rule 2: Separation: each agent steers to avoid crowding local flockmates

Rule 3: Alignment: each agent steers towards the average heading of local flockmates

Here, nearby or local refers to agents in the immediate neighborhood of an agent as defined by the straight-line distance. A

fourth rule is added to the above three rules for the purposes of the demonstration to ensure that the agents stay within a spe-
cified area. Initially, a set number of boids are randomly assigned positions and orientations (Figure 3a). With only these
simple rules applied at the individual agent level and only to the agents in its neighborhood, agent movements begin to ap-
pear coordinated and purposeful. A leaderless flock emerges (Figure 3b). Three observations can be made about the Boids
Model: (1) the rules are simple, and (2) the rules use only local information, and (3) repeated experiments (not shown here)
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demonstrate that the patterns that develop such as group formation and clustering can be extremely sensitive to the initial
conditions - in this case, the initial random positions and orientations of the boids.
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Figure 3: (a) Boids simulation, initial random configuration (b) Boids simulation, after 500 updates showing two apparent
clusters of agents

2.6  Simple Rules Result in Emergent Organization and Complex Behaviors

We can make an observation from both Life and Boids. And that is that sustainable patterns can emerge in systems that are
completely described by simple, deterministic rules based on only local information. These observations have practical im-
plications for developing and interpreting agent-based models, as more complex models of the kind that people are likely to
build to represent real-world phenomenon would also exhibit emergent behavior resulting from agent interaction.

In the natural world the implications go far beyond this simple kind of emergence illustrated by Life and Boids. Based on
simple rules of behavior and the nature of agent interactions, natural systems seemingly exhibit collective intelligence, or
swarm intelligence, even without the existence of or the direction provided by a central authority. How is it that an ant colony
can organize itself to carry out the complex tasks of food gathering and nest building and at the same time exhibit an enorm-
ous degree of resilience if the colony is seriously disrupted? Natural systems are able to not only survive, but also to adapt
and become better suited to their environment, effectively optimizing their behavior over time. Swarm intelligence has in-
spired agent-based modeling as well as practical optimization techniques, such as ant colony optimization and particle swarm
optimization that have been used to solve practical scheduling and routing problems (Bonabeau, Dorigo and Theraulaz,
1999). These types of algorithms can be implemented in agent-based modeling.

3 AGENT-BASED MODELING APPLICATIONS

Agent-based modeling is being applied to many areas, spanning human social, physical and biological systems. Applications
range from modeling ancient civilizations that have been gone for hundreds of years, to designing new markets for products
that do not exist right now. Selected applications areas are listed in Table 1, with an exemplar publication for each area. All
of the cited publications make the case for agent-based modeling as the preferred modeling approach versus other modeling
techniques for the particular application domain and the problem addressed. In a nutshell, they argue that agent-based model-
ing is used because only agent-based models can explicitly incorporate the complexity arising from individual behaviors and
interactions that exist in the real-world.

For example, Griffin and Stanish (2007) developed an agent-based model, using the Repast agent-based modeling toolkit,
for the Lake Titicaca basin of Peru and Bolivia covering the late prehistoric period, 2500 BC to AD 1000. The model was
used to study hypotheses for the causal variables affecting prehistoric settlement patterns and political consolidations. The
model’s geo-spatial structure consists of a 50,000 square km grid composed of 1.5 km square cells. Each cell models its geo-
graphy, hydrology, and agricultural potential. Agents consist of settlements, peoples, political entities, and leaders that inte-
ract with each other and the environment. Agent behavior is modeled as a set of condition-action rules that are based on hy-
pothesized causal factors affecting agricultural production, migration, competition, and trade. The authors report that through
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a series of simulation runs, the model produced a range of alternative political pre-histories and the emergence of macro-level
patterns that corresponded to observed patterns in the archaeological record.

Charania, et al. (2006) uses agent-based simulation to model possible futures for a market in sub-orbital space tourism.
Each agent represents an entity within the space industry, such as consumers, producers, the government, etc., that provides
or demands different products and services. Tourism companies seek to maximize profits while they compete with other
companies for sales. Individual companies decide the price they will charge for a flight aboard their vehicle. Customers eva-
luate the products offered by the companies according to their tastes and preferences.

Mock and Testa (2007) develop an agent-based model of predator-prey relationships between transient killer whales and
threatened marine mammal species (sea lions and sea otters) in Alaska. The authors state that until now only simplistic, static
models of killer whale consumption had been constructed due to the fact that the interactions between transient killer whales
and their marine mammal prey are poorly suited to classical predator-prey modeling approaches. Their agent-based killer
whale model includes both individuals and hunting groups. Individual agents eat, grow, reproduce, and die. Hunting groups
change in size and composition while encountering other marine mammals.

Typically, in any sampling of agent-based models, applications range across a continuum, from small, elegant, minimalist
models to large-scale decision support systems. Minimalist models are based on a set of idealized assumptions, and are de-
signed to capture only the most salient features of a system. These models are exploratory electronic laboratories in which al-
ternative assumptions can be varied over many simulations. Decision support models tend to be large-scale applications, de-
signed to answer a broad range of real-world policy questions. These models are distinguished by including real data and
having passed some level of validation testing to establish credibility.

There are many more agent-based modeling publications in each of the applications areas listed in Table 1, and there are
many more application areas than the table references to which agent-based modeling is being successfully applied.

4 HOWTODO ABMS

4.1 Modeling Agent Processes

Identifying agents, accurately specifying their behaviors, and appropriately representing agent interactions are the keys to de-
veloping useful agent models. One begins developing an agent-based model by identifying the agent types (classes) along
with their attributes. Agents are generally the decision-makers in a system whether they be human, organizational, or auto-
mated.

Once the agents are defined, agent behaviors are specified. One needs to have a theory of agent behavior as a basis for
modeling agent behavior. For example, a normative model in which agents attempt to optimize a well-defined objective can
be a useful starting point to eventually developing more descriptive and domain-specific behavioral heuristics. Alternatively,
one may begin with a generic behavioral heuristic, such as anchoring and adjustment, to describe agent behavior or more
broadly a formal behavioral modeling framework such as BDI (Belief-Desire-Intent) or others (Rao and Georgeff 1991).

In addition to agents, an agent-based model consists of agent relationships, discussed below. One then adds the methods
that control which agents interact, when they interact, and how they interact.

92



Macal and North

Table 1: A Sample of Recent Agent-based Applications

Application Area

Model Description

Air Traffic Control

Agent-based model of air traffic control to analyze control policies and performance of an air traf-
fic management facility (Conway 2006)

Anthropology

Agent-based model of prehistoric settlement patterns and political consolidation in the Lake Titi-
caca basin of Peru and Bolivia (Griffin and Stanish 2007)

Biomedical Research

The Basic Immune Simulator, an agent-based model to study the interactions between innate and
adaptive immunity (Folcik, An and Orosz 2007)

Chemistry

An agent-based approach to modeling molecular self-assembly (Troisi, Wong and Ratner 2005)

Crime Analysis

Agent-based model that uses a realistic virtual urban environment, populated with virtual burglar
agents (Malleson 2009).

Ecology Agent-based model of predator-prey relationships between transient killer whales and other ma-
rine mammals (Mock and Testa 2007).

Energy Analysis Agent-based model for scenario development of offshore wind energy (Mast et al. 2007).

Epidemic Modeling BioWar, a scalable citywide multi-agent model, that simulates individuals embedded in social,
health, and professional networks and tracks the incidence of background and maliciously intro-
duced diseases (Carley et al. 2006).

Market Analysis Agent-based simulation that models the possibilities for a future market in sub-orbital space tour-

ism (Charania et al. 2006).

Organizational Deci-
sion Making

Agent based modeling approach to allow negotiations in order to achieve a global objective, spe-
cifically for planning the location of intermodal freight hubs (van Dam et al. 2007).

4.2  Topologies as a Basis for Social Interaction

Agent-based modeling concerns itself with modeling agent relationships and agent interactions as much as it does modeling
agents and agent behaviors. The primary issues of modeling agent interactions are specifying who is, or could be, connected
to who, and the dynamics governing the mechanisms of the interactions. For example, an agent-based model of Internet
growth would include mechanisms that specify who connects to who, why, and when.

A set of common topologies used in agent-based models for representing social agent interaction is shown in Figure 4. In
the “soup,” or aspatial model, agents have no location and the model has no spatial representation (Figure 4a). Generally,
pairs of agents are randomly selected for interaction and then returned to the soup from which they came. Cellular automata
represent agent interaction patterns and available local information by using a grid or lattice, and the cells immediately sur-
rounding an agent are its neighborhood (Figure 4b). In the Cellular Automata model, agents move from cell to cell on a grid.
Generally no more than one agent occupies a cell at a given time. The von Neumann “5-neighbor” neighborhood is shown in
Figure 4b. In the Euclidean space model, agents roam in 2D, 3D or higher dimensional spaces (Figure 4c). In the Geographic
Information System (GIS) topology, agents move over a realistic geo-spatial landscape (Figure 4d). Networks allow an
agent’s neighborhood to be defined more generally and sometimes more accurately. For the network topology, networks may
be static or dynamic (Figure 4e). For static networks, links are pre-specified and do not change in the model. For dynamic
networks, links (and possibly nodes) are determined endogenously according to the mechanisms included in the model.

No matter what topology is used in an agent-based model to connect the agents, the essential idea is that of local interac-
tion and local information transfer between agents. The essential idea is that agents only interact at any given time with a li-
mited (small) number of other agents out of all the agents in the population. This notion is implemented by defining a local
neighborhood and thereby limiting interaction to a small number of agents that happen to be in that neighborhood. The point
is that there is limited connectivity and information is confined to local exchanges. There is no such thing as global informa-
tion. This is not to say that agents need to be located in close proximity to one another spatially to be able to interact. The
network topology allows agents to be linked on the basis of relationships other than proximity. Most empirically-based social
networks are have characteristic network topologies with a individual agents having a limited number of connections.
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(a) “Soup” Model (Aspatial) (b) Cellular Automata (von Neumann) (c) Euclidean Space (2-D)

(d) Geographic Information System (GIS)
Figure 4 Topologies for Agent Relationships and Social Interaction
4.2.1 ABMS Software and Toolkits

Agent-based modeling can be done using general, all-purpose software or programming languages, or it can be done using
specially designed software and toolkits that address the specific requirements for modeling agents. Agent modeling can be
done in the small, on the desktop, or in the large, using large-scale computing clusters, or it can be done at any scale in-
between. Projects often begin small, using one of the desktop ABMS tools, or whatever tool or programming language the
developers are familiar with, and then grows the initial prototype in stages into larger-scale agent-based models, often using
dedicated ABMS toolkits. Often one begins developing their first agent model using the approach that one is most familiar
with, or the approach that one finds easiest to learn given their background and experience.

We distinguish several approaches to building ABMS applications in terms of the scale of the software that one can ap-
ply according to the following continuum:

Desktop Computing for ABMS Application Development:

*  Spreadsheets: Excel using the macro programming language VBA

*  Dedicated Agent-based Prototyping Environments: Repast Simphony, NetLogo, StarLogo
*  General Computational Mathematics Systems: MATLAB, Mathematica

Large-Scale (Scalable) Agent Development Environments:

*  Repast

*  Swarm

+  MASON
*  AnyLogic
*  Other
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General Programming Languages:

*  Python
e Java
o Ct+t+

Desktop ABMS can be used to learn agent modeling, prototype basic agent behaviors, and perform limited analyses. Desk-
top agent-based models can be simple, designed and developed in a period of a few days by a single computer-literate mod-
eler using tools learned in a few days or weeks. Desktop agent modeling can be used to explore the potential of ABMS with
relatively minor time and training investments, especially if one is already familiar with the tool.

Spreadsheets, such as Microsoft Excel, are in many ways the simplest approach to modeling. It is easier to develop models
with spreadsheets than with many of the other tools, but the resulting models generally allow limited agent diversity, restrict
agent behaviors, and have poor scalability compared to the other approaches designed specifically for agent modeling. Agent-
based modeling in spreadsheets requires some macro-programming to be done in a language such as VBA (Visual Basic for
Applications), the macro programming language for Excel and other Microsoft Office applications. Significant agent models
have been developed entirely using spreadsheets (Bower and Bunn 2000). In previous WSC papers, we described an spread-
sheet implementation of a spatial agent-based shopper model (Macal and North 2007).

Special-purpose agent tools, such as NetLogo, and StarLogo, provide special facilities focused on agent modeling. The
most directly visible common trait shared by the various prototyping environments is that they are designed to get first-time
users started as quickly as possible. NetLogo is a free ABMS environment developed at Northwestern University’s Center for
Connected Learning and Computer-Based Modeling (Wilensky 1999). The NetLogo language uses a modified version of the
Logo programming language (Harvey 1997). NetLogo is designed to provide a basic computational laboratory for teaching
complex adaptive systems concepts. NetLogo was originally developed to support teaching, but it can be used to develop a
wide range of applications. NetLogo provides a graphical environment to create programs that control graphic “turtles” that
reside in a world of “patches” that is monitored by an “observer.” NetLogo includes an innovative participatory ABMS fea-
ture called HubNet, which allows groups of people to interactively engage in simulation runs alongside of computational
agents (Wilensky and Stroup 1999). NetLogo continues as a subject of active development and new versions with expanded
capabilities are released periodically.

General-purpose desktop computational mathematics system (CMS) with integrated development environments (IDEs),
such as MATLAB and Mathematica, can be used to develop agent models, although the agent-specific functionality has to be
written by the developer from scratch, as there are no dedicated libraries or modules that focus on agent-based modeling — at
least not yet (Macal 2004). The basic requirements is knowledge of how to program in a scripting language. Computational
mathematics systems are structured in two main parts: (1) the user interface that allows dynamic user interaction, and (2) the
underlying computational engine, or kernel, that performs the computations according to the user’s instructions. The underly-
ing computational engine is written in the C programming language for these systems, but C coding is unseen by the user.
The interpreted nature of these systems avoids the compilation and linking steps required in traditional programming lan-
guages. Computational mathematics systems have advantages derived from both the mathematical and interactive orienta-
tions of these tools. CMS environments have rich mathematical functions, and nearly any mathematical relation or function
that can be numerically calculated is available within these tools or their add-on libraries. In some cases, the tools even sup-
port symbolic processing and manipulation, which is useful for systems of equations that can be solved analytically and can
be exploited quite effectively to do agent-based modeling. In symbolic systems agent classes are defined as abstract data
types (Macal 2004). If a CMS environment is already familiar to a developer, this can be a good place to start agent-based
modeling.

Many large-scale ABMS software environments are now freely available. These include Repast (North, Collier and Vos,
2006), Swarm (SDG 2006; Minar et al. 1996), NetLogo (NetLogo 2007) and MASON (GMU 2006) among many others.
Proprietary toolkits are also available such as AnyLogic (2006). A review and comparison of Java-based agent modeling
toolkits is provided by Tobias and Hoffman (2004) and Nikolai and Madey (2009).

Swarm was the first ABMS software development environment, launched in 1994 at the Santa Fe Institute. Swarm was
originally written in Objective C and was later fitted with a Java interface.

Following the original Swarm innovation, the Repast (REcursive Porous Agent Simulation Toolkit) toolkit was developed
as a pure Java implementation (North, Collier and Vos, 2006). Repast will be described here in some detail to illustrate the
capabilities that an agent-based toolkit can provide, as the authors have familiarity with the toolkit being its developers. Re-
past has been used extensively in social simulation applications (North and Macal 2005). Repast is a widely used free and
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open source agent-based modeling and simulation toolkit (ROAD 2007). Repast Simphony (Repast S) is the latest version of
Repast, designed to provide visual point-and-click tools for agent model design, agent behavior specification, model execu-
tion, and results examination. The Repast S agent model designer is being developed to allow users to visually specify the
logical structure of their models, the spatial (e.g., geographic maps and networks) structure of their models, the kinds of
agents in their models, and the behaviors of the agents themselves. Once their models are specified, users can use the point-
and-click Repast S runtime environment to execute model runs as well as visualize and store results. In addition, the Repast S
runtime environment includes automated results analysis and connections to a variety of spreadsheet, visualization, data min-
ing, and statistical analysis tools, virtually all of which are free and open source.

As computational capabilities continue to advance in both hardware and software, new capabilities are continuously being
incorporated into the latest versions of ABMS toolkits. The field is advancing rapidly toward highly scalable, high productiv-
ity agent development environments.

5 WHY AND WHEN ABMS

We conclude by offering some ideas on the situations for which agent-based modeling can offer distinct advantages to con-
ventional simulation approaches such as discrete event simulation (Law 2007), systems dynamics (Sterman 2000) and other
quantitative modeling techniques. Axtell (2000) discusses several reasons for agent-based modeling especially compared to
traditional approaches to modeling economic systems. When is it beneficial to think in terms of agents? When one or more of
the following criteria are satisfied:

e  When the problem has a natural representation as being comprised of agents

e  When there are decisions and behaviors that can be well-defined

e  When it is important that agents have behaviors that reflect how individuals actually behave (if known)

e  When it is important that agents adapt and change their behaviors

e  When it is important that agents learn and engage in dynamic strategic interactions

e When it is important that agents have a dynamic relationship with other agents, and agent relationships form,
change, and decay

e  When it is important to model the processes by which agents form organizations, and adaptation and learning are
important at the organization level

e  When it is important that agents have a spatial component to their behaviors and interactions

e  When the past is no predictor of the future because the processes of growth and change are dynamic

e  When scaling-up to arbitrary levels is important in terms of the number of agents, agent interactions and agent states

e  When process structural change needs to be an endogenous result of the model, rather than an input to the model
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