Lecture 1: 2/8/21

Two Videos: Spinning Balls and Life through pictures

- Big phases and stages to us is actually part of a continuous set of change that are going on
- What looks like simple things on the surface is part of a much more complex system underneath
- Patterns at multiple levels

Milestones vs. Mechanisms

- Milestones = description of an average trend
 - Does not tell you *how* development happens
 - Does not explain variation
 - Milestones change as the underlying science advances
 - Ex: babies in different cultures will take their first steps at different times
- Themes for mechanistic approach
 - Developmental psychobiology
 - Multicausality and levels of organization
 - Historically, a changing relationship between biology and psychology
 - Cartesian dualism: mind and body as separate
 - How to have beliefs that are certain?
 - Doubt as a method anything that can be doubted away doesn't count
 - Reliability of sensory information?
 - Can I believe the information coming from my eyes?
 - No, you could be deceived
 - Ex: swizzle stick in martini glass, light refraction causing an optical illusion
 - What is this "I" that is doing the thinking?
 - Dualism = wall between rational thought (reliable) and sensory information (unreliable)
 - Perception vs cognition
 - Comparative (cross-species) data
 - Working with animals
 - Faster development than humans logistical reasons
 - Chronotropic organization
 - Cellular processes going on
 - How embryo organizes its cells
 - Reciprocal roles of theory and research
 - Breaking down cartesian wall

Lecture 2: 2/10/21

-

- Psychology and biology combined

- Psychosomatic medicine: mind and body interact
 - Eg: stress and illness
- Behavioral neuroscience
- Behavioral immunology
- Behavioral toxicology
- Newer disciplines
 - Cognitive neuroscience
 - Social and developmental cognitive neuroscience
- A psychobiological approach to development
 - Integration of psychology and biology
 - Mechanisms have components at multiple levels of organization
 - Environment (physical, social, cultural)
 - Behavior
 - Neural activity
 - Genetic activity
 - Concern for context, environment
 - Where does mechanism stop and environment start
 - Ex: conspecifics as part of a learning system
 - Environment can extend in and mechanism can extend out
 - Outside influences can turn genes on and off
 - Mechanisms can be both outside and inside baby as well as environment can be both in and outside the baby
- Bidirectional causality

-

- Changes in the neural activity affects the type of genes that are being expressed in that nuclei
- Changes in social interaction affect genetic activity
- Bidirectional influences at multiple organizations
- How these various level organization and activity between them is driving developmental phenomenon
- Genes and their environments
 - Traditional approach: often a "Cake" metaphor used to relate the two
 - Genes as recipe (blueprint) for development
 - Experience as ingredients for development
 - Implication of dichotomy
 - Cake metaphor is problematic
 - The blueprint itself can be changed by even fetal experiences
 - Ex: cloned kitties
 - CC vs rainbow
 - Cc has different temperments and habits even though they have exactly same genome
 - Evidence

- Small differences in timing (cellular timing in an embryo) can start a cascade creating a large difference overtime
 - A slight change in gene expression
 → cats with completely different
 color fur, temperament
- Genes and their environments
 - What's in a gene's environment?
 - Other genes
 - The question is not one of nature vs nurture
 - Figure out mechanisms that have components at multiple levels of organization
 - Psychobiologists study development in terms of multiple interacting influences
- Development is multicausal
 - Whole host of behaviors that mediate interactions between gene and environment and vice versa
 - Systems matter together
 - All effecting within a level and another level overtime
 - Example: the "A not B" error
 - Two targets in front of the baby
 - Train baby on reaching one side for the toy
 - Baby figures out to reach location A to get toy
 - Then hide it in the other location (baby sees this)
 - Babies before the age of 10 months still reach for A
 - Traditional explanation: testing object permanence
 - Maturational time table
 - Genes say go millenate which allows prefrontal cortex to allow object permanence to happen
 - Multicausality and "A not B"
 - Thelen: error without object
 - Changed the way the babies reached
 - Memory for the location is built out of how I got to that location in space
 - If you modify those dynamics you change the memory
 - Took a weighted wristband and put it on or took it off right before the B trial
 - Reach for the correct
 - Turn them right before B trial
 - They will past the test
 - Sitting and standing change before B trial
 - They will past the test
 - What are the underlying components of the error?

- Turn error on and off depending how you position baby
 - Focus on moment-to-moment task dynamics and reaching
 - Change reach trajectory
 - Change object salience
 - Assess at different levels of motor control
- Conclusion: object memory is an embodied process
 - Seeing, motor control, and memory come together
 - Change trajectory change memory
 - Sensory motive processes are becoming the memories that build this cognitive process that allows you to recognize objects that are hidden from you
 - No singular controller
 - Set of behaviors that are being recruited by the task
 - Motor and perceptual process are exerting influence on cognitive processes
- A moment of methods
 - Independent variable
 - Dependent variable
 - Extraneous variable
 - Thing that is adding noise to the dependent measure
 - Ex: is the baby hungry or tired, is the baby a good reacher, is the baby interested in the task
 - Confounding variable
 - An extraneous variable that changes systematically with independent variable
- Nested timescales
 - Development happens at multiple time scales
 - Moment to moment time (real time)
 - Learning, social interaction (real time social interaction)
 - Developmental time (months, years)
 - Ontogenetic stages
 - Evolutionary time
 - Time scale of generations and beyond
 - Why do these changes happen vs how?
 - Timescale of analysis has implications for amount of continuity/ discontinuity seen in development

Lecture 3: 2/15/21

- Continuity and discontinuity
 - Discontinuity at one timescale may be due to continuous processes at another timescale
 - Integrating timescales
 - Proximate cause

- Developmental, mechanistic explanation
- "How" question: what are the physiological and behavioral mechanisms at work?
- Ultimate cause
 - Evolutionary explanation
 - "Why" question: What is the adaptive significance of the behavior?
- Barriers to integration
 - "Levels of analysis chauvinism"
 - Reification of biology and culture (Japanese macaque example)
 - Confusion of ultimate with proximate explanations
 - Nominal fallacy: mistaking a description for an explanation
 - Usually teleological
 - Attachment and embodied cognition
 - Traditional: early attachment caused by "internal working model"
 - Executive controller of behavior
 - Dualism?
 - Model of behavior already present in the baby's head \rightarrow evolution put it there
 - What are the proximal controls of attachment behavior
- Braitenberg: "vehicles"
 - Law of uphill analysis and downhill invention
 - Hard to do inference
 - Easier to design things with goals in mind
 - Small, simple changes can yield dramatic differences in behavior
 - Sensor is temp dependent and directly connected to flapper
 - Sensor is organizing behavior
 - Moves flipper faster in hot water, slower in colder
 - Given the way that temperature and water currents and objects are distributed in your room it's gonna be very hard to predict where this thing will be in your room
 - Light sensitive sensor
 - Robot encounters light
 - A: more light on the right side making wheel on right go faster \rightarrow turn away from the light
 - Get as far away from light as it can
 - B: more light on left side connected to right wheel so it will turn towards the lights
 - No box in robots head that says avoid light go to light
 - Where does this organization of behavior come from
 - Organization of vehicle: where the sensors are on the body
 - Internal wiring: straight or crossed wires, morphology

- Organization of information surrounding vehicle : layout of information in the environment
- Simple mechanism can drive the emergence of complex behavior
- Studying biological vehicles
 - Attachment to mom: come to mom after playing with toys
 - Using mom as a base and returning to her
 - Goes into the world goes back to mom loop
 - What's organizing behavior?
 - This is attachment
 - problem : doesn't tell us what the control is over the babies behavior
 - Number of ways that the baby might be balancing some sensory preferences between mom and structure in the environment balance between familiar stuff and exploration
 - Mom: warmth, odor, movement
 - World: shape, sound, color, and texture that are not familiar to mom
 - Attachment being caused and controlled by multiple coacting influences
 - Contingency and reliability of moms behavior
- Learning from biological and nonbiological interaction partners
- Nature vs Nurture
 - Definitions of "innate"
 - Congenital: present at birth
 - Criteria for predetermined:
 - Chronotypy: fixed sequence of development
 - Heritability (a pop measure): how variation in a trait varies with the DNA within population
 - But watch out for misattribution of causality
 - Coupling of sender and receiver (when studying communication systems)
 - Examples from species recognition
 - Nipple-seeking in rat pups: a strong role of experience
 - What is the developmental mechanism knowing to find nipple
 - Amniotic fluid spills all over moms ventrum \rightarrow babies follow that and find nipple
 - Genetic sensitivity to amniotic fluid?
 - Predetermined information?
 - How do you test the hypothesis that knowing about amniotic fluid is innate?
 - Injected citrol (lemon scent) into amniotic sac, cleaned off ventrum and rubbed nipple with regular scent and other with citrol. Rat pups go to citrol scented nipple

- Genes help olfactory systems be sensitive prenatally, but don't have genes that tell them what scents matter. They have to pick that up in environment
 - Not predetermined behavior
 - Biologically driven prenatal learning
 - Exposure not just teaching
 - Experience: tuning of biological system

Lecture 4: 2/17/21

- Acoustic recognition in crickets
 - Evidence of coupling, heritability
 - Female sensitive to different frequencies
 - Different species have different chirp rates
 - T. oceanicus : fast chirpers
 - T. commodus : really slow deep longer chirps
 - Hybrid: intermediate frequency
 - Predet
 - Genes that influence auditory system in females are on same chromosome as male's listening system
- Shift in filial preferences in rats
 - Day 15: shift in sensory control from thermal to olfactory
 - Chronotropic but mediated by thermal tactile stimulation
 - More than 10 days of experience to reliably learn context for thermal tactile cues
 - What's going on in those first 15 days?
 - First willing to huddle with either, but by day 15 it has to smell like a rat
 - Suckling not necessary
 - Milk unnecessary and non-additive
 - Thermal Tactile stimulation sufficient to induce preference and is equivalent to foster dam
 - Stable behaviors come from stable environments
 - Don't need an executive controller in head
 - In world there's a constant source of stimulation that allows for a cue to be learned
- What is development?
 - Habitat: "address" where you are, various kinds of habitats
 - Niche: "occupation" the functional relations between an organism's capacities and the environment
 - Development is a series of adaptive changes to a series of environmental challenges
 - Organism and environment change one another
 - Niche construction: through mutual modifications, new relationships emerge over developmental time

- Development is a series of adaptive changes to a series of environmental changes
- Where do the adaptive changes come from?
- Development is the emergent product of many decentralized and local interactions that occur in real time (remember the "A not B" example)
- How to think like a developmental scientist
 - What are the mechanisms of change?
 - At what levels of organization do the mechanisms exist?
 - At what timescales do the mechanisms ope9 ie?
- Three principles for developing intelligence
 - Theme: the development of intelligence requires immaturity
 - Coordination of sensory-motor activity
 - Sticky mittens example
 - Perception and action is constructing cognition
 - Instead of cognition being a set of preexisting rules about how the world works, you build those skills by acting on the world in immature ways
 - Coupled to intelligent
 - Importance of structured social interaction
 - Babies don't exist in a social vacuum
 - Partners provide spatial and temporal structure for feedback
 - Social environment relatively tuned to your capacities
 - Social environment provides well timed information
 - Babies respond to babbling with simple speech
 - Overlapping coordinations
 - A-not-B example
 - Overlapping across domains of modalities
 - Everyday things constitute learning
 - What looks like different domains of development become coordinated through your everyday activity that acts you to operate in cognitively sophisticated ways like the A-not-B example
- Behavioral embryology
 - Prenatal life is not a passive experience, an active experience with lots of sources of stimulation
 - The questions
 - How and why does behavior, sensation, and learning develop prenatally?
 - First, an overview of the "how"
 - Human embryological development
 - Germinal period: conception implantation in uterine wall (10 days)
 - Cell division and specialization: probabilistic epigenesis
 - Not predetermined; what a cell winds up being is influenced by other cells it bumps into

- Cell determination organized by cell-cell interactions and exchange of proteins, which selectively activate or inhibit gene expression
- Genome being selectively activated and inactivated by environment of cell and interaction with other cells
- Blastocyst: pluripotent cells (cells that can do anything to more specialized cells
 - Ectoderm skin nails teeth
 - Endoderm digestive system lungs
 - Mesoderm muscles bones circulatory system
 - 3 layer specialization

Lecture 5 and 6: February 22nd and 24th, 2021

- Human embryological development
 - Neural tube development
 - Embryonic period: 10 days (implantation) 8 weeks
 - 3 weeks: heart begins to beat
 - 5 weeks: own heartbeat causes whole embryo to move
 - A lot of spontaneous movement starts to happen
 - Fetal period: 9-40 weeks
 - Early fetal period (9-16 weeks)
 - Myogenic response: if fetus strongly stimulated muscle contraction will occur
 - First neuromuscular behavior: turn away from touch near mouth
 Area of sensitivity with time
 - Frist reflex (grasping)
 - Diaphragm contracts and expands
 - First discontinuity (17-22 weeks)
 - Decrease in fetal activity
 - Why: maturation of mid-brain regions (dorsal thalamus and striatum) inhibits activity of spinal/bulbar regions and resulting movement
 - State organization (24-32 weeks)
 - Onset of recurrent and predictable cycles of activity
 - 40 min cycle: retained after birth
 - 96 minute cycle: not retained
 - REM "sleep"
 - Rapid eye movement with qualitative changes in brain activity
 - Spends 78 percent of time in REM
 - Eyes open
 - Auditory system responsive (24-30 weeks)
 - Cardiac and motor reactions to vibroacoustic and air-coupled stimuli (120 dB ex utero, 90 dB intra-abdominal
 - Maternal speech is more salient than outside speech

- Integrated expressions (32-36 weeks)
 - Facial muscles moving in coordinated patterns: grimaces, smiles present
- Birth
 - Approximately 40 weeks
 - Continuity of sensory function from prenatal to neonatal environment
 - Birth does not represent a sudden change in sensory function
 - Implications of prenatal experience for postnatal behavior
 - Is early experience really a "buzzing blooming confusion" (William James) ?
 - We know that prenatal auditory learning has already happened, most of the world is blurry (limited visual system) -- allows for some clarity
 - Link between advanced auditory and limited visual systems helps with post natal learning
- Prenatal experience influences adaptive behavior postnatally examples:
 - Theme: sensory stimulation affects the functional development of sensory systems
 - Humans
 - Prenatal learning of speech sounds
 - Reinforcement paradigm using Ibi
 - Interburst intervals while sucking shorter or longer
 - Babies actively preferring to hear their mother's speech
 Infants can hear mother's speech in utero
 - Exposed in utero to Cat in the Hat or King and the Cheese
 - Neonates prefer story heard prenatally over new story
 - (matched for number novel words, length)
 - Overview of human prenatal learning study
 - Moon and Fifer
 - Contingency paradigm
 - Infants prefer in utero maternal speech (low pass filtered with heartbeats) over nonfiltered maternal speech
 - Fifer and Moon (1995) prefer filtered (with heartbeats removed) over non-filtered maternal speech
 - General preference for familiar sounds
 - Moon, Bever, Fifer
 - Contingency paradigm
 - Infants prefer maternal speech over silence, non-maternal speech over silence, maternal over non-maternal speech
 - 2 day olds prefer female english (native language) over female spanish
 - Chickens
 - In ovo stimulation of head and neck muscles necessary for development of pecking behavior

- Self stimulation: as a result of its movement, the -- chick embryo is tossed about "like a boat in a storm"
 - All the motion is stimulating other parts of the body facilitating the adaptation of a critical skill
 - If there neck muscles haven't been prenatally stimulated they can't peck
 - Early spontaneous movement is influencing organization of the nervous system that allows development of specific motor commands that make pecking happen
- Mallard ducklings: prenatal determination of species recognition
 - In ovo auditory experience necessary for recognition of maternal assembly call
 - Mallard ducklings approach and follow their mother in response to maternal assembly call
 - Development of response to call
 - Behavior not dependent on prior postnatal experience with call
 - What about prenatal development?
 - Premature (day 21 and 22) auditory exposure resulted in increased bill-clapping from day 21 through day 22
 - Predetermined or probabilistic
 - Prenatally devocalize embryos, control auditory exp, then test behavior (response to duck call) after hatching
 - Rearing condition: devocal- isolated
 - Preference: none
 - Rearing condition: devocal-isolated-exposed to chicken call
 - Preference: chicken
 - Vocal-isolated-exposed to chicken call
 - Preference: none
 - Coval-with sibs- exposed to chicken call
 - Preference: mallard
 - Species recognition depends upon prenatal experience with own and sibling's vocalizations
- Conclusions
 - Normally occurring sensory stimulation was critic al for development of a species-typical behavior
 - Behavior that seemed predetermined (instinctive and innate) turned out to be probabilistic, with multiple determinants both maturational and experiential
 - "Structure only fully realizes itself through function"
 - Experience = patterns of stimulation
- Experience as a developmental mechanism
 - Immature function can have an important effect on later development
 - Experience is not just teaching

- Patterns of stimulation (multiple sources both external and internal)
 - History of your exposure to those patterns also matter
- Definitions of experience
 - Currently popular linear framework:
 - Genes \rightarrow structure \rightarrow function (at the proximate level)
 - Kuo
 - Genes \rightarrow structure < -- > function
 - Strong effects of context/ environment
 - Oyama: The ontogeny of information
 - Can extend consideration of context to molecular/genetic level
 - Bidirectional influences between genes and their products
 - Gottlieb
 - Focus on structure < -- > function
 - Experience involves sensory or motor function whether evoked or spontaneous
 - Experience = stimulation = function
 - Implications for immature behavior
 - Implications for research:
 - Species typical environments can help creat species-typical characteristics
 - Must perturb the environment to determine the (often multiple) causes of behavior
 - Perturbations yield neopheotypes if system is open to environmental effects
 - Like a ducking that can prefer chicken calls
 - Experience and stimulation play a huge roll in development
 - How do biological systems construct themselves in adaptive ways over time?
 - Maintenance
 - Most general, low-level mechanism
 - Ambient stimulation as stabilizing influence on nervous system function

Lecture 7: March 1st, 2021

- Roles of Experience: To discover mechanisms of development, need to
 - Examine structure-function relationships at multiple levels of organization
 - Use valide behavioral measures
 - Remember that development is characterized by probabilistic epigenesis
- Rats in space
 - How does gravity affect vestibular system
 - Pregnant rats move a lot \rightarrow constitutes input to the developing fetus
 - Adaptive things moments after being born
 - Confounding variables: Acceleration on launch, a lot of Noise
 - Centrifuge: rats could handle this

- Vomit Comet
 - Parabola: zero g to multiple gs
 - Rats seemed fine
 - Didn't seem to induce stress
- Speakers test
 - Rats were fine
- Controlled for stresses of launch
- Remove gravity
- Female behavior stimulate offspring in utero \rightarrow activities that occur hundreds and thousands of times a day
 - Uterus is a very stimulating environment both her maternal behavior and physiology
 - Acceleration , locomotion
 - Rearing stirring \rightarrow head/body grooming
 - Abdominal grooming \rightarrow providing pressure at different points
 - Hindlimb stretching
 - Control for the presence of stimuli by removing gravity
- Angular forces on offspring in utero
 - Rats in space and on ground pitch just about as much
 - On X axis: space rats do more rolling
 - On Y axis: similar amounts
- How would you test for vestibular system function in neonate rat pup
 - Dropped into a beaker of water on their backs
 - If they can write themselves they roll and right themselves in respect to gravity
 - By day 3 space rats still doing worse
 - By day 5 everyone is the same
 - Genes cue Neurons in vestibular system to start growing but the gravitational environment that determines where they grow
 - Rely on gravitational environment to tell them the right place to grow
- The birth transition
 - Bio-social-behavioral shift
 - Change in habitat but also a change in niche
 - Continuity of sensory function from prenatal to postnatal niches
 - Stage 1 (approx 14 hours for 1st birth)
 - Uterine contractions increase in frequency and duration
 - Approx 20 min to every minute
 - Cervical dilation
 - Stage 2
 - Baby pushed into and through birth canal
 - Stage 3
 - Baby emerges

- Placenta expelled from uterus
- From infant's point of view
 - Extreme stress:
 - Pressure on head, body
 - Reduced oxygen
 - Reaction to stress
 - Catecholamine surge increase in heart rate, blood pressure, and glucose level promotes breathing after birth
 - Implications for Cesarean births
 - Simulate pressure to cue that stress response
 - An ontogenetic adaptation?
 - Neonate morphology
 - Large head relative to body
 - Large eyes relative to head
 - Enhances caregiver responsiveness in humans
 - An ontogenetic adaptation?
 - Does it have adaptive value? Useful?
 - Yes
 - Does it go away?
 - Fades as you mature, yes
 - How do you get rid of an ontogenetic adaptation?
- Reflexes
 - What is a reflex? How would you differentiate it from other types of movements?
 - Simple, highly stereotyped, unlearned
 - Do reflexes develop?
 - Piaget (yes) ; Pavlov (no)
 - Depends what reflex
 - Development of some reflexive movements
 - Start out gross, diffuse, widespread
 - Become more specific with time
 - Blinking
 - Lights flash
 - Babinsky
 - Stroke foot and toes spread out
 - Moro
 - Arch their back and bring arms up when suddenly dropped
 - Rooting
 - Stimulate cheek baby will turn in that direction
 - Stepping
 - Hold a baby over a surface feet will bounce
 - Goes away after a month/month and a half
 - Sucking
 - Objects touch mouth automatically start sucking

- Grasping
 - Stimulate palm of hand \rightarrow latching onto object
- Example: trigeminal "jaw jerk" reflex of guinea pig
 - Earlier: whole head moves
 - Weeks later: only jaw moves
- Are reflexes ontogenetic adaptation?
 - Some are: rooting
 - Some are not: stepping (does not go away, comes back), blinking

WIM Section 3/2/21

- Levels of Analysis

	Dynamic (explanation in terms of historic sequence)	Static (explanation of current form of species)
Proximate view (<i>How</i> an <i>individual</i> organism functions)	Ontogeny (development): Developmental changes in individuals	Mechanism (causation): Mechanistic explanation of how structures work
Ultimate view (<i>Why</i> a <i>species</i> evolved a trait/behavior)	Phylogeny (evolution): History of evolution of the trait in a species over time	Function (adaptation): Trait solves a reproductive or survival problem in current environment

- Do all levels of analysis always apply?

- Spandrels (no clear function)
- Innate behaviors (no clear ontogeny)
- Completely novel behaviors (no clear phylogeny)
- Cat meowing
 - Why meow
 - Older cats pretty much exclusively meow at humans
 - Explanations
 - Ontogeny
 - Communication for food
 - Phylogeny?
 - Getting response
 - Function?
 - For food
 - Cat meowing similar acoustic properties to humans cry

- Make noises for responses
- As they became companions to humans this trait further developed
- Innate behaviors fixed action patterns
 - Gulls: specific place around parents beak where they peck to regurgitate
 - Experience can help : improved upon
 - Egg rolling
 - Benefits to both the adults and to the young
 - Protect offspring from predators
 - Let them know if they have to get more food for the children
 - Fixed action patterns are cue and stimuli based
- Infant directed behavior
 - Meerkats
 - Environmental scaffolding
 - Expose the juvenile to different levels of complexity depending on their age and experience

Lecture 8: 3/8/21

- Piaget: Sensorimotor substages
 - Birth 2 years
 - Themes
 - Infant plays active role in own development
 - Early immature and exploratory behavior crucial
 - Development of:
 - Coordination between sensory input and motor behavior
 - Voluntary control
 - Problem-solving behavior
 - Symbolic representation
 - Piaget: dynamics of development
 - Schema: a psychological unit of action
 - Used as building blocks for more complex behavior
 - Two processes of change: assimilation and accommodation
 - Assimilation: incorporate new experience into existing schema
 - Example: sucking reflex
 - Accommodation: modify schema to handle new context
 - Example: grasping
 - Combination of assimilation and accommodation results in oral exploration (everything goes in the mouth)
 - Six sensorimotor substages
 - 1: 0-1.5 mo: reflex schemas
 - 2: 1.5-4 mo: primary circular reactions
 - Repetition of pleasure acts
 - Making noise seems to be fun for them

- Not doing it to make something happen in the world
- 3: 4-8 mo: secondary circular reactions
 - Explore cause- effect relationships
- 4: 8-12 mo: coordination of secondary circular reactions
 - Combine early schemas to solve problems
- 5: 12-18 mo: tertiary circular reactions
 - Vary behavior to solve problems experimentation
 - Discovering predictable patterns in the world
 - Making predictions and testing **systematically**
- 18-24 mo: beginning of symbolic representation
 - Internalize those patterns
- Sensory development
 - Three principles of sensory ontogenesis
 - Sequential onsets of function
 - Heterochrony
 - Function prior to functional maturation
 - Invariat sequence of sensory system onset
 - Tactile
 - Vestibular
 - Auditory
 - Visual
 - Olfactory varies
 - Order is conserved across species, but the timing of birth is most certainly not
 - Rate and timing of development itself is subject to a selection
 - pressure is called evo devo or evolution of development
 - Heterochrony
 - Evolution acts to coordinate rates of development of different components of a functional system
 - Systemogenesis: system- specific development
 - Example: grasping reflex in human infant
 - All parts of system mature as a unit
 - Sensory tissue in palm
 - Motor neurons in forearm
 - Arborization for hand in somatosensory cortex
 - Function does not equal maturity
 - Focus on onset of function rather than attainment of maturity
 - In altricial mammals, visual and auditory systems are often functional before they are exposed to input
 - Intersensory integration
 - Advantages of non-functional sensory system
 - Allows active sensory modality to create straightforward map
 - Allows new modality to "inherit" pre-existing pattern of stimulation

- For example:
 - Serial order of sensory dominance over development
 - Homing in kittens under olfactory/thermal, then gradually under visual control
 - Familiar smells with unfamiliar sights
 - Early onset in one system can disrupt disfunction in another
 - Early eye opening in rats caused reduction in olfactory discriminative ability
 - Creates sudden increase in visual salience, reorganizes behavior (increased visual homing)
- The able infant: competence in context
 - What to look for when studying the development of altricial species
- Developmental strategies
 - Precocial
 - More developed at birth
 - Altricial
 - To nourish
 - Less developed at birth
 - = incompotent?
 - Trend towards defining altricial animals in terms of what they can't do:
 - Motor
 - Sensory
 - Independent eating
 - Homeostasis
 - Hydrating
 - Advantages of altriciality
 - Aaltriciality, as an evolutionary strategy, outsources information to the social environment
 - Parent-offspring systems can drive learning
 - Infants are active social learners
 - The information content of parent behavior requires closer study
 - The flip side
 - When altricial young do demonstrate an ability, that ability is often thought to be innate and fixed (impervious to experience)
 - Imitation (human)
 - Neonates imitate facial movements (tongue protrusion, mouth opening)
 - Adaptive behavior that gets adults to realize their babies are like them
 - Promote attachment and
 - caregiving

- Have to do 3 minutes of a passive face, then do gesture
- Mouth-opening repeatedly fails to replicate
- Jones
 - Infants will tongue-protrude to interesting visual or auditory stimuli
 - Developmental changes in tongue protrusion
- Imitation develops
- Ontogney of imitative behaviors
 - Tap table first behavior babies reliably imitate
 - Bye bye and clapping hands second
 - More learning
 - Tutoring and reinforcement
 - Auditory and visual cues
 - Sequential finger movements and eh-eh
 - Require more fine motor control
 - Not a lot of tutoring
 - Last hand on head and tongue protrusion
 - No visual or auditory cues
 - Ability to imitate develops gradually
 - Mechanisms for imitation are entirely unknown
 - Thermoregulation (rats)