Measures of Effect

KP Fennie, PhD MPH

Objectives

- Compare and contrast absolute and relative effects
- Calculate and interpret risk difference, population risk difference, etiologic fraction and population etiologic fraction
- Compare and contrast type I and type II errors

Absolute vs. relative effects

- Absolute effects
- Subtracted measures of disease frequency
- Give us information about public health impact
- Also called attributable risk
- Relative effects
- Divided measures of disease frequency
- Gives us information about strength of association between exposure and outcome

Rate difference

- Absolute effect
- Also called attributable risk
- Describes disease burden among exposed
- Difference between incidence rate of disease of exposed and unexposed groups
$\mathrm{RD}=I_{e}-I_{n e}$ where
I= \# new cases during a specified time period $\times \mathrm{K}$ population at risk during same time period ($\mathrm{K}=$ some multiplier)
- Helpful because risk of exposed is not just a function of exposure but also other factors:
- Example: Heart disease among those with high cholesterol function of cholesterol but also genetics, tobacco use, etc. If you subtract risk of unexposed from risk of exposed, have a better understanding of cholesterol's contribution

Six Cities Study example of rate difference

- Difference between mortality incidence in most polluted city (Steubenville, Ohio) and least polluted city (Portage, Wisconsin)
- $I_{\text {(Steubenville) }}-I$ (Portage)
16.24 per $1000 \mathrm{py}-10.73$ per $1000 \mathrm{py}=$ 5.51 per 1000 py
- Interpretation: 5.51 excess deaths per 1000 person-years among Steubenville residents due to pollution

Risk difference

- Absolute effect
- Also called attributable risk
- Difference between cumulative incidence of exposed and unexposed
Reminder cumulative incidence =
\# new cases in pop. at risk for a specified time $\times 100$
\# in population at risk at beginning of time period

Population risk difference

- Measure of benefit to population derived by modifying a risk factor
- How many cases in whole population can be attributed to a particular exposure
- $I_{p}=\left(I_{e} * P_{e}\right)+\left(I_{n e} * P_{n e}\right)$
- Population risk difference $=I_{p} \quad-I_{n e}$
- Also PRD $=R D \times P_{e}$
- Function of risk difference and proportion of population exposed

Population risk difference example

- Assume 10\% of US pop exposed to pollution levels as high as in Steubenville
Method 1: $\mathrm{PRD}=R D \times P_{e}$
- 5.51 per 1000 py * $0.1=0.55$ per 1000 py

Method 2: $I_{p}-I_{n e}$
$-\quad\left[\left(I_{e}{ }^{*} P_{e}\right)+\left(I_{n e}{ }^{*} P_{n e}\right)\right]-I_{n e}$

- [(16.24 per 1000 py * 0.1) + (10.73 per 1000 py* $\left.\left.^{*} .9\right)\right]$ 10.73 per 1000 py $=0.55$ per 1000 py

Interpretation: 0.55 deaths per 1000 py attributed to pollution in US.

Etiologic fraction

" Also called "attributable risk percent among exposed" and "attributable proportion among exposed" or "attributable fraction (exposed)"

- Relative effect
- Estimates percentage of cases among exposed due to exposure
- Problem with relative risk is that it is the risk between the exposed and non exposed, but non exposed also may have a high risk due to other factors
- Etiologic fraction $=\left(I_{e}-I_{n e}\right) / I_{e}$ * 100

Etiologic fraction (cont.)

- Etiologic fraction $=\left(I_{e}-I_{n e}\right) / I_{e}$
- Also because $I_{n e} / I_{e}=1 / R R$ Etiologic fraction $=(R R-1) / R R$
- Six Cities example
(16.24 per 1000 py - 10.73 per 1000)/16.24 per 1000 py = 0.34 or 34%
34\% of deaths among Steubenville participants may be attributed to pollution

Population etiologic fraction

- Proportion of rate of disease in population that is due to exposure
- Also called attributable proportion among total population or attributable fraction (population) or population attributable risk
- $\left(I_{p}-I_{n e}\right) / I_{p}$
- Also $\frac{P_{e}(R R-1)}{P_{e}(R R-1)+1}$
- Six Cities example

Method 1: (11.28 per 1000 py - 10.73 per 1000)/11.28 per
$1000 \mathrm{py}=4.9 \%$
Method 2: [.1 (1.51-1)] / [[.1 (1.51-1)] + 1] = 4.9\%
Interpretation: 4.9\% of deaths among all US residents
(assuming 10\% exposed) may be attributed to pollution

Impact of disease on population

- Depends on
- Strength of association between exposure and resulting disease
- Overall incidence rate of disease in population
- Prevalence of exposure

Absolute and relative measures of comparison

Type of measure	Formula	Interpretation
Rate or risk difference	$I_{e}-I_{n e}$	Excess rate of disease among exposed pop.
Population risk difference	$I_{p}-I_{n e}$	Excess rate of disease in total pop.
Etiologic fraction	$\left(I_{e}-I_{n e}\right) / I_{e}$	Excess proportion of disease among exposed
Population etiologic fraction	$\left(I_{p}-I_{n e}\right) / I_{p}$	Excess proportion of disease among total pop.
Relative risk	$I_{e} / I_{n e}$	Strength of association between exposure and disease

Adapted from Ashengrau Essentials of Epidemiology in Public Health, 2003.

Hypothesis testing

- Testing an assertion about a parameter in a population
- Example: Cigarette smoking affects lung cancer
- Test to see whether data support (not prove) hypothesis
- Usually formulated as null hypothesis (Ho)
- Example: There is no association between smoking and lung cancer

Hypothesis testing

- Hypothesis testing begins with assumption that null hypothesis is true
$-\mathrm{H}_{\mathrm{O}}=$ null hypothesis - no relationship
$-\mathrm{H}_{1}=$ research (alternative) hypothesis there is a relationship
- Example: There is no association between smoking and lung cancer

p-value

- When inferring from sample phenomena to pop. phenomena, need to be fairly sure that what is observed in sample is not a function of mere chance
- It is possible to determine statistically - with considerable precision - if sample phenomena is attributable to chance
- p value = probability that the observed result is due to chance alone; level of significance
- $p=.05$: 5 chances in 100 that event occurred by chance
$p=.10$?

$$
p=.01 ?
$$

$$
p=.001 ?
$$

α VS p

- $\alpha=$ a predetermined choice for level of significance; most widely accepted standard for α is .05
- Ex: $\alpha=.05 \rightarrow$ "I am willing to risk a 5\% chance of saying that there is a difference when - in truth - there is none"
- p = observed or attained level of significance; the actual probability of saying that there is a difference when - in truth - there is none

Statistical Significance

- If p value is < what α was set at (usually .05), then we say that the result is statistically significant
- If a result is statistically significant, it does not necessarily mean that it is clinically significant or clinically relevant
- With a large enough sample size, it is very likely that results will be statistically significant, but that does not mean that they will have practical value

Clinical vs. statistical significance

- Very small differences can be statistically significant if sample size large enough
- Example: 1 mm Hg difference in blood pressure (120 mm vs. 119 mm systolic) could be statistically significant if there was an extremely large sample size
- Prior to study
- decide what a meaningful difference is
- calculate sample size needed
- design study so large enough sample can be recruited
- Statistical significance is a necessary precondition for clinical significance; if a difference is not statistically significant, it can't be clinically significant, unless the sample size is too small \& study lacks power

Hypothesis testing revisited

- Type I error: probability of rejecting null hypothesis when H_{0} is true (measured by Pvalue)
- Type II error: probability of failing to reject null hypothesis when it is false
- Power (1- β) probability of rejecting null hypothesis when it is false (our goal!)

Truth

	H_{0} true	H_{0} false
Don't reject H_{0} (not stat. sig.)	Correct	β (type II error)
Reject H_{0} (stat. sig.)	α (type I error)	correct

Types of Error

- Type I Error: In reality there is no difference, but you conclude that there is.
- alpha $(\alpha)=$ probability of making a Type I error; to avoid, lower the level of significance (e.g., . 05 to .01)
- rejecting a true H_{o}
- Type II Error: In reality there is a difference, but you conclude that there is not.
- beta $(\beta)=$ probability of making a Type II error; to avoid, raise the level of significance (e.g., . 05 to .10)
- accepting a false H_{o}

Relationship Between Type of Error

- As α is decreased, β is increased.
- As α is increased, β is decreased.
- Increase N to decrease probability of both Type I \& Type II errors

Example: Error

- Test efficacy of new drug (Drug A) on pts w/ MI
- We hypothesize that mortality in patients taking Drug A will be lower than mortality in patients taking Drug B (old drug)

Consequences of each type of error

 α- We use Drug A because in the sample we found that mortality was improved, when in reality it doesn't make a difference
- Type I error
- Consequence: Pts won't benefit from the drug. Presuming that the drug is not harmful, we do not directly hurt pts, but since we think we have found a "cure", we may no longer test other drugs.

Consequences of each type of error

 β- We don't use Drug A because in the sample we found that it made no difference in mortality, when in reality it would have made a difference
- Type II error
- Consequence: By withholding the drug, pts may die who might otherwise have lived

Story

Once upon a time, there was a King who was very jealous of the Queen. He had 2 Knights, Alpha who was very handsome, \& Beta, who was very ugly. It happened that the Queen was in love with Beta. The King, however, suspected the Queen was having an affair with Alpha \& had him beheaded. Thus the King made both kinds of errors: he suspected a relationship (with Alpha) where there was none, \& he failed to detect a relationship (with Beta) where there really was one. The Queen fled the kingdom with Beta \& lived happily ever after, while the King suffered torments of guilt about his mistaken \& fatal rejection of Alpha.

The End

Confidence interval

- Computed interval around a value e.g. OR 2.0 ($95 \% \mathrm{Cl} 1.5-3.0$)
- Indicates the amount of random error in estimate
- 95\% confidence interval interpretation: CI contains "true" population estimate 95\% of time
- If study repeated 100 times, 95 times the CI will contain true estimate and 5 times it won't
- Depends on data variability and sample size
- Wide CI indicates low precision, narrow indicates high precision
- If includes 1.0 not statistically significant

Confidence interval

- Depending on situation, confidence interval is calculated in various ways
- Based on standard deviation
- $95 \% \mathrm{Cl}$ based on 1.96 units
- 99\% CI based on 2.58 units
- Related to p-value with respect the standard deviation
- Confidence Intervals are not always equidistant
- RR 2.0 (95\%CI 1.5, 2.5)
- RR 2.0 (95\%CI 1.2, 4.6)
- RR 0.5 (95\%CI 0.23, 0.62)
- Many in Epidemiology feel Cl's should be used and not pvalues

Interpretation of Confidence interval

- The width of the 95\% CI indicates the range of variation for point estimates that may be expected by chance differences from one random sample to another.
- CI represents the range within which the true magnitude of effect lies, with a certain degree of assurance (e.g., 95\%).
- You are 95\% sure (confident) that the CI includes the population parameter; 95\% of all 95\% CIs do include the population parameter.

Assuming the same n , what happens to the width of the CI as the value of the confidence coefficient (AKA, confidence level) is increased (goes from 95\% to 99\%)?
A. The CI narrows
B. The CI widens
C. The Cl stays the same

Odds ratios, P values, and 95\% Confidence Intervals for a Case-Control Study with Three Different Sample Sizes

Parameter	$n=20$	$n=50$	$n=500$
Odds ratio	2.0	2.0	2.0
P	0.50	0.20	0.001
95% Cls	$0.5,7.7$	$0.9,4.7$	$1.5,2.6$

HIV Infection and Associated Risks Among Young Men Who Have Sex with Men in a Florida Resort Community (Webster R, et al. JAIDS 2003;33:223-31)

- Objective: obtain population-based estimates of HIV prevalence and risk behaviors among young MSM in South Beach
- Methods:
- Sampled based on residential site
- Inclusion criteria, 18-29 yo unmarried males, had resided ≥ 30 days in South Beach, reported ever having sex with another man
- Anonymous
- Interview-administered and self-administered surveys
- HIV (OraSure) test

Young MSM survey (continued)

- Results:
- 2622 residential units screened between 1/20/96 and 12/19/96
- 108 men met entry criteria
- 92.6\% consented

Unadjusted Odds Ratios for Selected Correlates of Oral HIV Antibody Test Results, Young Men Who Have Sex with Men, Miami Beach, 1996

Characteristic	$\begin{aligned} & \text { HIV- } \\ & (\mathrm{n}=85) \% \end{aligned}$	$\begin{aligned} & \hline \text { HIV+ } \\ & (\mathrm{n}=15) \% \end{aligned}$	Unadjusted odds ratio
Currently has primary partner	44.7	20.0	0.31 (0.08-1.18)
<2 years residency in South Beach	50.6	80.0	3.91 (1.03-14.84)**
```# anal sex partners 0-1 2-9 10 or more```	$\begin{aligned} & 27.4 \\ & 56.0 \\ & 16.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 13.3 \\ 20.0 \\ 66.7 \end{array}$	$\begin{array}{\|l\|} \hline 1.00 \\ 0.75(0.12-4.70) \\ 8.21(1.57-43.08)^{\star *} \\ \hline \end{array}$
"Cruised" for sex monthly	41.2	80.0	5.71 (1.50-21.73)**
Belief that stopping to put on condom takes fun out	27.1	60.0	4.04 (1.30-12.62)**

## Which measure would I calculate?

- What percentage of myocardial infarctions (heart attacks) would be prevented among people in the United States if there was no tobacco use?
- How many myocardial infarctions among tobacco smokers would be prevented if the smokers didn't smoke?
- How many myocardial infarctions in the United States would we prevent if there was no tobacco use?
- What percentage of myocardial infarctions among smokers are due to smoking?

