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Abstract

We propose a unified mechanism for achieving

coordination and communication in Multi-Agent

Reinforcement Learning (MARL), through

rewarding agents for having causal influence

over other agents’ actions. Causal influence is

assessed using counterfactual reasoning. At each

timestep, an agent simulates alternate actions that

it could have taken, and computes their effect on

the behavior of other agents. Actions that lead to

bigger changes in other agents’ behavior are con-

sidered influential and are rewarded. We show that

this is equivalent to rewarding agents for having

high mutual information between their actions.

Empirical results demonstrate that influence leads

to enhanced coordination and communication

in challenging social dilemma environments,

dramatically increasing the learning curves of the

deep RL agents, and leading to more meaningful

learned communication protocols. The influence

rewards for all agents can be computed in a

decentralized way by enabling agents to learn a

model of other agents using deep neural networks.

In contrast, key previous works on emergent

communication in the MARL setting were unable

to learn diverse policies in a decentralized manner

and had to resort to centralized training. Conse-

quently, the influence reward opens up a window

of new opportunities for research in this area.

1. Introduction

Intrinsic Motivation for Reinforcement Learning (RL) refers

to reward functions that allow agents to learn useful behavior
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across a variety of tasks and environments, sometimes in

the absence of environmental reward (Singh et al., 2004).

Previous approaches to intrinsic motivation often focus on

curiosity (e.g. Pathak et al. (2017); Schmidhuber (2010)),

or empowerment (e.g. Klyubin et al. (2005); Mohamed &

Rezende (2015)). Here, we consider the problem of deriving

intrinsic social motivation from other agents in multi-agent

RL (MARL). Social learning is incredibly important for

humans, and has been linked to our ability to achieve

unprecedented progress and coordination on a massive scale

(Henrich, 2015; Harari, 2014; Laland, 2017; van Schaik &

Burkart, 2011; Herrmann et al., 2007). While some previous

work has investigated intrinsic social motivation for RL (e.g.

Sequeira et al. (2011); Hughes et al. (2018); Peysakhovich &

Lerer (2018)), these approaches rely on hand-crafted rewards

specific to the environment, or allowing agents to view the

rewards obtained by other agents. Such assumptions make it

impossible to achieve independent training of MARL agents

across multiple environments.

Achieving coordination among agents in MARL still remains

a difficult problem. Prior work in this domain (e.g., Foerster

et al. (2017; 2016)), often resorts to centralized training to

ensure that agents learn to coordinate. While communication

among agents could help with coordination, training emer-

gent communication protocols also remains a challenging

problem; recent empirical results underscore the difficulty

of learning meaningful emergent communication protocols,

even when relying on centralized training (e.g., Lazaridou

et al. (2018); Cao et al. (2018); Foerster et al. (2016)).

We propose a unified method for achieving both coordination

and communication in MARL by giving agents an intrinsic

reward for having a causal influence on other agents’ actions.

Causal influence is assessed using counterfactual reasoning;

at each timestep, an agent simulates alternate, counterfactual

actions that it could have taken, and assesses their effect

on another agent’s behavior. Actions that lead to relatively

higher change in the other agent’s behavior are considered

to be highly influential and are rewarded. We show how

this reward is related to maximizing the mutual information

between agents’ actions, and hypothesize that this inductive

bias will drive agents to learn coordinated behavior. Maximiz-
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ing mutual information as a form of intrinsic motivation has

been studied in the literature on empowerment (e.g. Klyubin

et al. (2005); Mohamed & Rezende (2015)). Social influence

can be seen as a novel, social form of empowerment.

To study our influence reward, we adopt the Sequential So-

cial Dilemma (SSD) multi-agent environments of Leibo et al.

(2017). Through a series of three experiments, we show that

the proposed social influence reward allows agents to learn to

coordinate and communicate more effectively in these SSDs.

We train recurrent neural network policies directly from pix-

els, and show in the first experiment that deep RL agents

trained with the proposed social influence reward learn ef-

fectively and attain higher collective reward than powerful

baseline deep RL agents, which often completely fail to learn.

In the second experiment, the influence reward is used to di-

rectly train agents to use an explicit communication channel.

We demonstrate that the communication protocols trained

with the influence reward are more meaningful and effective

for obtaining better collective outcomes. Further, we find

a significant correlation between being influenced through

communication messages and obtaining higher individual re-

ward, suggesting that influential communication is beneficial

to the agents that receive it. By examining the learning curves

in this second experiment, we again find that the influence

reward is essential to allow agents to learn to coordinate.

Finally, we show that influence agents can be trained

independently, when each agent is equipped with an internal

neural network Model of Other Agents (MOA), which has

been trained to predict the actions of every other agent. The

agent can then simulate counterfactual actions and use its

own internal MOA to predict how these will affect other

agents, thereby computing its own intrinsic influence reward.

Influence agents can thus learn socially, only through

observing other agents’ actions, and without requiring a

centralized controller or access to another agent’s reward

function. Therefore, the influence reward offers us a simple,

general and effective way of overcoming long-standing

unrealistic assumptions and limitations in this field of

research, including centralized training and the sharing of

reward functions or policy parameters. Moreover, both

the influence rewards as well as the agents’ policies can be

learned directly from pixels using expressive deep recurrent

neural networks. In this third experiment, the learning curves

once again show that the influence reward is essential for

learning to coordinate in these complex domains.

The paper is structured as follows. We describe the envi-

ronments in Section 2, and the MARL setting in Section 3.

Section 4 introduces the basic formulation of the influence

reward, Section 5 extends it with the inclusion of explicit

communication protocols, and Section 6 advances it by

including models of other agents to achieve independent

training. Each of these three sections presents experiments

and results that empirically demonstrate the efficacy of

the social influence reward. Related work is presented in

Section 7. Finally, more details about the causal inference

procedure are given in Section 8.

2. Sequential Social Dilemmas

Sequential Social Dilemmas (SSDs) (Leibo et al., 2017)

are partially observable, spatially and temporally extended

multi-agent games with a game-theoretic payoff structure.

An individual agent can obtain higher reward in the

short-term by engaging in defecting, non-cooperative

behavior (and thus is greedily motivated to defect), but the

total payoff per agent will be higher if all agents cooperate.

Thus, the collective reward obtained by a group of agents

in these SSDs gives a clear signal about how well the agents

learned to cooperate (Hughes et al., 2018).

We experiment with two SSDs, a public goods game Cleanup,

and a public pool resource game Harvest. In both games

apples (green tiles) provide the rewards, but are a limited

resource. Agents must coordinate harvesting apples with the

behavior of other agents in order to achieve cooperation (for

further details see Section 2 of the Supplementary Material).

Tthe code for these games is available in open-source.1

As the Schelling diagrams in Figure 2 of the Supplementary

Material reveal, all agents would benefit from learning to

cooperate in these games, because even agents that are being

exploited get higher reward than in the regime where more

agents defect. However, traditional RL agents struggle to

learn to coordinate or cooperate to solve these tasks effec-

tively (Hughes et al., 2018). Thus, these SSDs represent chal-

lenging benchmark tasks for the social influence reward. Not

only must influence agents learn to coordinate their behavior

to obtain high reward, they must also learn to cooperate.

3. Multi-Agent RL for SSDs

We consider a MARL Markov game defined by the tuple

〈S,T,A,r〉, in which multiple agents are trained to indepen-

dently maximize their own individual reward; agents do

not share weights. The environment state is given by s∈S.

At each timestep t, each agent k chooses an action akt ∈A.

The actions of all N agents are combined to form a joint

action at = [a0t ,...a
N
t ], which produces a transition in the

environment T (st+1|at,st), according to the state transition

distribution T . Each agent then receives its own reward

rk(at,st), which may depend on the actions of other agents.

A history of these variables over time is termed a trajectory,

τ = {st,at,rt}
T

t=0
. We consider a partially observable

setting in which the kth agent can only view a portion of

1https://github.com/eugenevinitsky/

sequential_social_dilemma_games

https://github.com/eugenevinitsky/sequential_social_dilemma_games
https://github.com/eugenevinitsky/sequential_social_dilemma_games
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the true state, skt . Each agent seeks to maximize its own

total expected discounted future reward, Rk=
∑∞

i=0
γirkt+i,

where γ is the discount factor. A distributed asynchronous

advantage actor-critic (A3C) approach (Mnih et al., 2016)

is used to train each agent’s policy πk.

Our neural networks consist of a convolutional layer, fully

connected layers, a Long Short Term Memory (LSTM)

recurrent layer (Gers et al., 1999), and linear layers. All

networks take images as input and output both the policy πk

and the value function V πk(s), but some network variants

consume additional inputs and output either communication

policies or models of other agents’ behavior. We will refer to

the internal LSTM state of the kth agent at timestep t as uk
t .

4. Basic Social Influence

Social influence intrinsic motivation gives an agent addi-

tional reward for having a causal influence on another agent’s

actions. Specifically, it modifies an agent’s immediate reward

so that it becomes rkt =αekt +βckt , where ekt is the extrinsic or

environmental reward, and ckt is the causal influence reward.

To compute the causal influence of one agent on another,

suppose there are two agents, k and j, and that agent j is

able to condition its policy on agent k’s action at time t, akt .

Thus, agent j computes the probability of its next action

as p(ajt |a
k
t ,s

j
t ). We can then intervene on akt by replacing

it with a counterfactual action, ãkt . This counterfactual

action is used to compute a new distribution over j’s next

action, p(ajt |ã
k
t ,s

j
t ). Essentially, agent k asks a retrospective

question: “How would j’s action change if I had acted

differently in this situation?”.

By sampling several counterfactual actions, and av-

eraging the resulting policy distribution of j in

each case, we obtain the marginal policy of j,

p(ajt |s
j
t ) =

∑

ãk

t

p(ajt |ã
k
t , s

j
t )p(ã

k
t |s

j
t ) —in other words,

j’s policy if it did not consider agent k. The discrepancy

between the marginal policy of j and the conditional policy

of j given k’s action is a measure of the causal influence

of k on j; it gives the degree to which j changes its planned

action distribution because of k’s action. Thus, the causal

influence reward for agent k is:

ckt =
N
∑

j=0,j 6=k

[

DKL[p(a
j
t |a

k
t ,s

j
t )
∥

∥

∥

∑

ãk

t

p(ajt | ã
k
t ,s

j
t )p(ã

k
t |s

j
t )]

]

=
N
∑

j=0,j 6=k

[

DKL[p(a
j
t |a

k
t ,s

j
t )
∥

∥

∥
p(ajt |s

j
t )]

]

. (1)

Note that it is possible to use a divergence metric other than

KL; we have found empirically that the influence reward is

robust to the choice of metric.

The reward in Eq. 1 is related to the mutual information (MI)

between the actions of agents k and j, I(ak;aj |s). As the

reward is computed over many trajectories sampled inde-

pendently from the environment, we obtain a Monte-Carlo

estimate of I(ak;aj |s). In expectation, the influence reward

incentivizes agents to maximize the mutual information

between their actions. The proof is given in Section 1 of

the Supplementary Material. Intuitively, training agents

to maximize the MI between their actions results in more

coordinated behavior.

Moreover, the variance of policy gradient updates increases

as the number of agents in the environment grows (Lowe et al.,

2017). This issue can hinder convergence to equilibrium for

large-scale MARL tasks. Social influence can reduce the

variance of policy gradients by introducing explicit depen-

dencies across the actions of each agent. This is because the

conditional variance of the gradients an agent is receiving

will be less than or equal to the marginalized variance.

Note that for the basic influence model we make two assump-

tions: 1) we use centralized training to compute ckt directly

from the policy of agent j, and 2) we assume that influence is

unidirectional: agents trained with the influence reward can

only influence agents that are not trained with the influence

reward (the sets of influencers and influencees are disjoint,

and the number of influencers is in [1,N−1]). Both of these

assumptions are relaxed in later sections. Further details, as

well as further explanation of the causal inference procedure

(including causal diagrams) are available in Section 8.

4.1. Experiment I: Basic Influence

Figure 1 shows the results of testing agents trained with the

basic influence reward against standard A3C agents, and an

ablated version of the model in which agents do not receive

the influence reward, but are able to condition their policy

on the actions of other agents (even when the other agents

are not within the agent’s partially observed view of the

environment). We term this ablated model the visible actions

baseline. In this and all other results figures, we measure

the total collective reward obtained using the best hyper-

parameter setting tested with 5 random seeds each. Error

bars show a 99.5% confidence interval (CI) over the random

seeds, computed within a sliding window of 200 agent steps.

We use a curriculum learning approach which gradually

increases the weight of the social influence reward over C

steps (C∈ [0.2−3.5]×108); this sometimes leads to a slight

delay before the influence models’ performance improves.

As is evident in Figures 1a and 1b, introducing an awareness

of other agents’ actions helps, but having the social influence

reward eventually leads to significantly higher collective

reward in both games. Due to the structure of the SSD games,

we can infer that agents that obtain higher collective reward

learned to cooperate more effectively. In the Harvest MARL

setting, it is clear that the influence reward is essential to
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achieve any reasonable learning.

(a) Cleanup (b) Harvest

Figure 1: Total collective reward obtained in Experiment 1.

Agents trained with influence (red) significantly outperform

the baseline and ablated agents. In Harvest, the influence

reward is essential to achieve any meaningful learning.

To understand how social influence helps agents achieve

cooperative behavior, we investigated the trajectories

produced by high scoring models in both Cleanup and

Harvest; the analysis revealed interesting behavior.

As an example, in the Cleanup video available here:

https://youtu.be/iH_V5WKQxmo a single agent

(shown in purple) was trained with the social influence

reward. Unlike the other agents, which continue to move

and explore randomly while waiting for apples to spawn,

the influencer only traverses the map when it is pursuing an

apple, then stops. The rest of the time it stays still.

Figure 2: A moment

of high influence when

the purple influencer sig-

nals the presence of

an apple (green tiles)

outside the yellow in-

fluencee’s field-of-view

(yellow outlined box).

Figure 2 shows a moment of

high influence between the in-

fluencer and the yellow influ-

encee. The influencer has cho-

sen to move towards an ap-

ple that is outside of the ego-

centric field-of-view of the yel-

low agent. Because the influ-

encer only moves when apples

are available, this signals to the

yellow agent that an apple must

be present above it which it

cannot see. This changes the

yellow agent’s distribution over

its planned action, p(ajt |a
k
t ,s

j
t ),

and allows the purple agent to

gain influence. A similar mo-

ment occurs when the influ-

encer signals to an agent that has

been cleaning the river that no

apples have appeared by staying

still (see Figure 6 in the Supplementary Material).

In this case study, the influencer agent learned to use its own

actions as a binary code which signals the presence or absence

of apples in the environment. We observe a similar effect in

Harvest. This type of action-based communication could be

likened to the bee waggle dance discovered by von Frisch

(1969). Evidently, the influence reward gave rise not only to

cooperative behavior, but to emergent communication.

It is important to consider the limitations of the influence

reward. Whether it will always give rise to cooperative be-

havior may depend on the specifics of the environment and

task, and tuning the trade-off between environmental and

influence reward. Although influence is arguably necessary

for coordination (e.g. two agents coordinating to manipulate

an object must have a high degree of influence between their

actions), it may be possible to influence another agent in a

non-cooperative way. The results provided here show that the

influence reward did lead to increased cooperation, in spite of

cooperation being difficult to achieve in these environments.

5. Influential Communication

Given the above results, we next experiment with using the

influence reward to train agents to use an explicit communi-

cation channel. At each timestep, each agent k chooses a dis-

crete communication symbol mk
t ; these symbols are concate-

nated into a combined message vector mt=[m0
t ,m

1
t ...m

N
t ],

for N agents. This message vector mt is then given as input

to every other agent in the next timestep. Note that previous

work has shown that self-interested agents do not learn to use

this type of ungrounded, cheap talk communication chan-

nel effectively (Crawford & Sobel, 1982; Cao et al., 2018;

Foerster et al., 2016; Lazaridou et al., 2018).

Figure 3: The communication model has two heads, which

learn the environment policy, πe, and a policy for emitting

communication symbols, πm. Other agents’ communication

messages mt−1 are input to the LSTM.

To train the agents to communicate, we augment our initial

network with an additional A3C output head, that learns a

communication policy πm and value function Vm to deter-

mine which symbol to emit (see Figure 3). The normal policy

and value function used for acting in the environment, πe and

Ve, are trained only with environmental reward e. We use

the influence reward as an additional incentive for training

the communication policy, πm, such that r=αe+βc. Coun-

terfactuals are employed to assess how much influence an

agent’s communication message from the previous timestep,

mk
t−1, has on another agent’s action, a

j
t , where:

ckt =

N
∑

j=0,j 6=k

[

DKL[p(a
j
t |m

k
t−1,s

j
t )
∥

∥

∥
p(ajt |s

j
t )]

]

(2)

https://youtu.be/iH_V5WKQxmo
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Importantly, rewarding influence through a communication

channel does not suffer from the limitation mentioned in the

previous section, i.e. that it may be possible to influence

another agent in a non-cooperative way. We can see this

for two reasons. First, there is nothing that compels agent

j to act based on agent k’s communication message; if mk
t

does not contain valuable information, j is free to ignore it.

Second, because j’s action policy πe is trained only with en-

vironmental reward, j will only change its intended action as

a result of observing mk
t (i.e. be influenced by mk

t ) if it con-

tains information that helps j to obtain environmental reward.

Therefore, we hypothesize that influential communication

must provide useful information to the listener.

5.1. Experiment II: Influential Communication

Figure 4 shows the collective reward obtained when training

the agents to use an explicit communication channel. Here,

the ablated model has the same structure as in Figure 3, but

the communication policy πm is trained only with environ-

mental reward. We observe that the agents incentivized to

communicate via the social influence reward learn faster, and

achieve significantly higher collective reward for the majority

of training in both games. In fact, in the case of Cleanup, we

found thatα=0 in the optimal hyperparameter setting, mean-

ing that it was most effective to train the communication head

with zero extrinsic reward (see Table 2 in the Supplementary

Material). This suggests that influence alone can be a suf-

ficient mechanism for training an effective communication

policy. In Harvest, once again influence is critical to allow

agents to learn coordinated policies and attain high reward.

(a) Cleanup (b) Harvest

Figure 4: Total collective reward for deep RL agents with

communication channels. Once again, the influence reward

is essential to improve or achieve any learning.

To analyze the communication behaviour learned by the

agents, we introduce three metrics, partially inspired by

(Bogin et al., 2018). Speaker consistency, is a normalized

score ∈ [0,1] which assesses the entropy of p(ak|mk) and

p(mk|ak) to determine how consistently a speaker agent

emits a particular symbol when it takes a particular action,

and vice versa (the formula is given in the Supplementary Ma-

terial Section 4.4). We expect this measure to be high if, for

example, the speaker always emits the same symbol when it is

cleaning the river. We also introduce two measures of instan-

taneous coordination (IC), which are both measures of mu-

tual information (MI): (1) symbol/action IC = I(mk
t ;a

j
t+1)

measures the MI between the influencer/speaker’s symbol

and the influencee/listener’s next action, and (2) action/action

IC =I(akt ;a
j
t+1) measures the MI between the influencer’s

action and the influencee’s next action. To compute these

measures we first average over all trajectory steps, then take

the maximum value between any two agents, to determine

if any pair of agents are coordinating. Note that these mea-

sures are all instantaneous, as they consider only short-term

dependencies across two consecutive timesteps, and cannot

capture if an agent communicates influential compositional

messages, i.e. information that requires several consecutive

symbols to transmit and only then affects the other agents

behavior.

Figure 5: Metrics describing the quality of learned com-

munication protocols. The models trained with influence

reward exhibit more consistent communication and more

coordination, especially in moments where influence is high.

Figure 5 presents the results. The speaker consistencies

metric reveals that influence agents more unambiguously

communicate about their own actions than baseline agents,

indicating that the emergent communication is more mean-

ingful. The IC metrics demonstrate that baseline agents

show almost no signs of co-ordinating behavior with com-

munication, i.e. speakers saying A and listeners doing B

consistently. This result is aligned with both theoretical re-

sults in cheap-talk literature (Crawford & Sobel, 1982), and

recent empirical results in MARL (e.g. Foerster et al. (2016);

Lazaridou et al. (2018); Cao et al. (2018)).

In contrast, we do see high IC between influence agents,

but only when we limit the analysis to timesteps on which

influence was greater than or equal to the mean influence

(cf. influential moments in Figure 5). Inspecting the results

reveals a common pattern: influence is sparse in time. An

agent’s influence is only greater than its mean influence in

less than 10% of timesteps. Because the listener agent is

not compelled to listen to any given speaker, listeners se-

lectively listen to a speaker only when it is beneficial, and

influence cannot occur all the time. Only when the listener

decides to change its action based on the speaker’s message

does influence occur, and in these moments we observe high

I(mk
t ;a

j
t+1). It appears the influencers have learned a strat-

egy of communicating meaningful information about their

own actions, and gaining influence when this becomes rele-

vant enough for the listener to act on it.
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Examining the relationship between the degree to which

agents were influenced by communication and the reward

they obtained gives a compelling result: agents that are the

most influenced also achieve higher individual environmental

reward. We sampled 100 different experimental conditions

(i.e., hyper-parameters and random seeds) for both games,

and normalized and correlated the influence and individual

rewards. We found that agents who are more often influenced

tend to achieve higher task reward in both Cleanup, ρ= .67,

p<0.001, and Harvest, ρ = .34, p<0.001. This supports

the hypothesis that in order to influence another agent via

communication, the communication message should contain

information that helps the listener maximize its own environ-

mental reward. Since better listeners/influencees are more

successful in terms of task reward, we have evidence that

useful information was transmitted to them.

This result is promising, but may depend on the specific ex-

perimental approach taken here, in which agents interact

with each other repeatedly. In this case, there is no advantage

to the speaker for communicating unreliable information

(i.e. lying), because it would lose influence with the listener

over time. This may not be guaranteed in one-shot interac-

tions. However, given repeated interactions, the above results

provide empirical evidence that social influence as intrinsic

motivation allows agents to learn meaningful communication

protocols when this is otherwise not possible.

6. Modeling Other Agents

Computing the causal influence reward as introduced in Sec-

tion 4 requires knowing the probability of another agent’s

action given a counterfactual, which we previously solved

by using a centralized training approach in which agents

could access other agents’ policy networks. While using a

centralized training framework is common in MARL (e.g.

Foerster et al. (2017; 2016)), it is less realistic than a scenario

in which each agent is trained independently. We can relax

this assumption and achieve independent training by equip-

ping each agent with its own internal Model of Other Agents

(MOA). The MOA consists of a second set of fully-connected

and LSTM layers connected to the agent’s convolutional layer

(see Figure 6), and is trained to predict all other agents’ next

actions given their previous actions, and the agent’s egocen-

tric view of the state: p(at+1|at,s
k
t ). The MOA is trained

using observed action trajectories and cross-entropy loss.

A trained MOA can be used to compute the social influence

reward in the following way. Each agent can “imagine” coun-

terfactual actions that it could have taken at each timestep,

and use its internal MOA to predict the effect on other agents.

It can then give itself reward for taking actions that it esti-

mates were the most influential. This has an intuitive appeal,

because it resembles how humans reason about their effect

on others (Ferguson et al., 2010). We often find ourselves

Figure 6: The Model of Other Agents (MOA) architecture

learns both an RL policy πe, and a supervised model that

predicts the actions of other agents, at+1. The supervised

model is used for internally computing the influence reward.

asking counterfactual questions of the form, “How would she

have acted if I had done something else in that situation?”,

which we answer using our internal model of others.

We only give the influence reward to an agent (k) when

the agent it is attempting to influence (j) is within its field-

of-view, because the estimates of p(ajt+1|a
k
t ,s

k
t ) are more

accurate when j is visible to k. This constraint could have the

side-effect of encouraging agents to stay in closer proximity.

However, an intrinsic social reward encouraging proximity

is reasonable given that humans seek affiliation and to spend

time near other people (Tomasello, 2009).

6.1. Experiment III: Modeling Other Agents

As before, we allow the policy LSTM of each agent to condi-

tion on the actions of other agents in the last timestep (actions

are visible). We compare against an ablated version of the

architecture shown in Figure 6, which does not use the output

of the MOA to compute a reward; rather, the MOA can be

thought of as an unsupervised auxiliary task that may help the

model to learn a better shared embedding layer, encouraging

it to encode information relevant to predicting other agents’

behavior. Figure 7 shows the collective reward obtained for

agents trained with a MOA module. While we see that the

auxiliary task does help to improve reward over the A3C base-

line, the influence agent gets consistently higher collective

reward. These results demonstrate that the influence reward

can be effectively computed using an internal MOA, and thus

agents can learn socially but independently, optimizing for a

social reward without a centralized controller.

Agents with influence achieve higher collective reward than

the previous state-of-the-art for these environments (275 for

Cleanup and 750 for Harvest) (Hughes et al., 2018). This is

compelling, given that previous work relied on the assump-

tion that agents could view one another’s rewards; we make

no such assumption, instead relying only on agents viewing

each other’s actions. Table 4 of the Supplementary Material
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(a) Cleanup (b) Harvest

Figure 7: Total collective reward for MOA models. Again,

intrinsic influence consistently improves learning, with the

powerful A3C agent baselines not being able to learn.

gives the final collective reward obtained in previous work,

and by each influence model for all three experiments.

7. Related work

Several attempts have been made to develop intrinsic social

rewards.2 Sequeira et al. (2011) developed hand-crafted re-

wards for a foraging environment, in which agents were pun-

ished for eating more than their fair share of food. Another

approach gave agents an emotional intrinsic reward based

on their perception of their neighbours’ cooperativeness in

a networked version of the iterated prisoner’s dilemma, but

is limited to scenarios in which it is possible to directly clas-

sify each action as cooperative or non-cooperative (Yu et al.,

2013). This is untenable in complex settings with long-term

strategies, such as the SSDs under investigation here.

Some approaches allow agents to view each others’ rewards

in order to optimize for collective reward. Peysakhovich &

Lerer (2018) show that if even a single agent is trained to op-

timize for others’ rewards, it can significantly help the group.

Hughes et al. (2018) introduced an inequity aversion moti-

vation, which penalized agents if their rewards differed too

much from those of the group. Liu et al. (2014) train agents

to learn their own optimal reward function in a cooperative,

multi-agent setting with known group reward. However, the

assumption that agents can view and optimize for each oth-

ers’ rewards may be unrealistic. Thus, recent work explores

training agents that learn when to cooperate based solely on

their own past rewards (Peysakhovich & Lerer, 2017).

Training agents to learn emergent communication protocols

has been explored (Foerster et al., 2016; Cao et al., 2018; Choi

et al., 2018; Lazaridou et al., 2018; Bogin et al., 2018), with

many authors finding that selfish agents do not learn to use an

ungrounded, cheap talk communication channel effectively.

Crawford & Sobel (1982) find that in theory, the information

communicated is proportional to the amount of common

interest; thus, as agents’ interests diverge, no communication

is to be expected. And while communication can emerge

2Note that intrinsic is not a synonym of internal; other people
can be intrinsically motivating (Stavropoulos & Carver, 2013).

when agents are prosocial (Foerster et al., 2016; Lazaridou

et al., 2018), curious (Oudeyer & Kaplan, 2006; Oudeyer &

Smith, 2016; Forestier & Oudeyer, 2017), or hand-crafted

(Crandall et al., 2017), self-interested agents do not to learn

to communicate (Cao et al., 2018). We have shown that

the social influence reward can encourage agents to learn to

communicate more effectively in complex environments.

Our MOA is related to work on machine theory of mind

(Rabinowitz et al., 2018), which demonstrated that a model

trained to predict agents’ actions can model false beliefs.

LOLA agents model the impact of their policy on the param-

eter updates of other agents, and directly incorporate this into

the agent’s own learning rule (Foerster et al., 2018).

Barton et al. (2018) propose causal influence as a way to mea-

sure coordination between agents, specifically using Con-

vergence Cross Mapping (CCM) to analyze the degree of

dependence between two agents’ policies. The limitation

if CCM is that estimates of causality are known to degrade

in the presence of stochastic effects (Tajima et al., 2015).

Counterfactual reasoning has also been used in a multi-agent

setting, to marginalize out the effect of one agent on a pre-

dicted global value function estimating collective reward, and

thus obtain an improved baseline for computing each agent’s

advantage function (Foerster et al., 2017). A similar paper

shows that counterfactuals can be used with potential-based

reward shaping to improve credit assignment for training a

joint policy in multi-agent RL (Devlin et al., 2014). However,

once again these approaches rely on a centralized controller.

Mutual information (MI) has been explored as a tool for de-

signing social rewards. Strouse et al. (2018) train agents to

optimize the MI between their actions and a categorical goal,

as a way to signal or hide the agent’s intentions. However, this

approach depends on agents pursuing a known, categorical

goal. Guckelsberger et al. (2018), in pursuit of the ultimate

video game adversary, develop an agent that maximizes its

empowerment, minimizes the player’s empowerment, and

maximizes its empowerment over the player’s next state.

This third goal, termed transfer empowerment, is obtained

by maximizing the MI between the agent’s actions and the

player’s future state. While a social form of empowerment,

the authors find that agents trained with transfer empower-

ment simply tend to stay near the player. Further, the agents

are not trained with RL, but rather analytically compute these

measures in simple grid-world environments. As such, the

agent cannot learn to model other agents or the environment.

Given the social influence reward incentivizes maximizing

the mutual information between agents’ actions, our work

also has ties to the literature on empowerment, in which

agents maximize the mutual information between their ac-

tions and their future state (Klyubin et al., 2005; Mohamed &

Rezende, 2015). Thus, our proposed reward can be seen as a

novel social form of empowerment.
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8. Details on Causal Inference

The causal influence reward presented in Eq. 1 is assessed

using counterfactual reasoning. Unlike a do-calculus inter-

vention (which estimates the general expected causal effect

of one variable on another), a counterfactual involves condi-

tioning on a set of variables observed in a given situation and

asking how would the outcome have changed if some vari-

able were different, and all other variables remained the same

(Pearl et al., 2016). This type of inquiry allows us to measure

the precise causal effect of agent k’s action at timestep t, akt ,

on agent j’s action, a
j
t , in the specific environment state st,

providing a richer and less sparse reward for agent k. Com-

puting counterfactuals requires conditioning on the correct

set of observed variables to ensure there are no confounds.

In our case, the conditioning set must include not only an

agent’s partially observed view of the environment state, s
j
t ,

but also the agent’s internal LSTM state u
j
t , to remove any

dependency on previous timesteps in the trajectory. Thus, the

basic causal influence reward can be more accurately written:

ckt =

N
∑

j=0,j 6=k

[

DKL[p(a
j
t |a

k
t ,s

j
t ,u

j
t )||p(a

j
t |s

j
t ,u

j
t )]

]

. (3)

Figure 8 shows the causal diagrams for computing the influ-

ence reward in both the basic case (8a) and the MOA case (8b).

Because basic influence looks at influence between agents’

actions in the same timestep, the diagram is much simpler.

However, to avoid circular dependencies in the graph, it re-

quires that agent k choose its action before j, and therefore

k can influence j but j cannot influence k. If there are more

than two agents, we assume a disjoint set of influencer and

influencee agents, and all influencers must act first.

(a) Basic (b) MOA

Figure 8: Causal diagrams of agent k’s effect on j’s action.

Shaded nodes are conditioned on, and we intervene on akt
(blue node) by replacing it with counterfactuals. Nodes with a

green background must be modeled using the MOA module.

Computing influence across timesteps, as in the communica-

tion and MOA experiments, complicates the causal diagram,

but ensures that each agent can influence every other agent.

Figure 8b shows the diagram in the MOA case, in which we

can isolate the causal effect of akt on a
j
t+1 because the back-

door path through st is blocked by the collider nodes at st+1

and u
j
t+1 (Pearl et al., 2016). Note that it would be sufficient

to condition only on skt in order to block all back-door paths

in this case, but we show 〈uk
t ,s

k
t ,a

j
t 〉 as shaded because all of

these are given as inputs to the MOA to help it predict a
j
t+1.

For the MOA to accurately estimate p(ajt+1|a
k
t ,s

k
t ), it must

model both the environment transition function T , as well as

aspects of the internal LSTM state of the other agent, u
j
t+1,

as shown by the shaded green variables in Figure 8b.

This is a simple case of counterfactual reasoning, that does

not require using abduction to update the probability of any

unobserved variables (Pearl, 2013). This is because we have

built all relevant models, know all of their inputs, and can

easily store the values for those variables at every step of the

trajectory in order to condition on them so that there are no

unobserved variables that could act as a confounder.

9. Conclusions and Future Work

All three experiments have shown that the proposed intrinsic

social influence reward consistently leads to higher collec-

tive return. Despite variation in the tasks, hyper-parameters,

neural network architectures and experimental setups, the

learning curves for agents trained with the influence reward

are significantly better than the curves of powerful agents

such as A3C and their improved baselines. In some cases,

it is clear that influence is essential to achieve any form of

learning, attesting to the promise of this idea and highlight-

ing the complexity of learning general deep neural network

multi-agent policies.

Experiment I also showed that the influence reward can lead

to the emergence of communication protocols. In experiment

II, which included an explicit communication channel, we

saw that influence improved communication. Experiment

III showed that influence can be computed by augmenting

agents with an internal model of other agents. The influ-

ence reward can thus be computed without having access to

another agent’s reward function, or requiring a centralized

controller. We were able to surpass state-of-the-art perfor-

mance on the SSDs studied here, despite the fact that previous

work relied on agents’ ability to view other agents’ rewards.

Using counterfactuals to allow agents to understand the ef-

fects of their actions on others is a promising approach with

many extensions. Agents could use counterfactuals to de-

velop a form of ‘empathy’, by simulating how their actions

affect another agent’s value function. Influence could also

be used to drive coordinated behavior in robots attempting to

do cooperative manipulation and control tasks. Finally, if we

view multi-agent networks as single agents, influence could

be used as a regularizer to encourage different modules of the

network to integrate information from other networks; for

example, to hopefully prevent collapse in hierarchical RL.
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